A number N is an Armstrong number of order n (n being the number of digits) if

$$
a b c d \ldots=a^{n}+b^{n}+c^{n}+d^{n}+\ldots=N
$$

For example, 153 is an Armstrong number of order 3 because

$$
1^{3}+5^{3}+3^{3}=1+125+27=153
$$

Likewise, 54748 is an Armstrong number of order 5 because

$$
5^{5}+4^{5}+7^{5}+4^{5}+8^{5}=3125+1024+16807+1024+32768=54748
$$

In this problem you have to determine whether a given number is Armstrong number or not.

Input

The first line of input is an integer, T that determines the number of test cases. Each of the next T lines contain a positive integer N, where $N \leq 1000000000$.

Output

For each line of input, there will be one line of output. If N is an Armstrong number print 'Armstrong', otherwise print 'Not Armstrong' (without the quotes).

Sample Input

3
153
2732
54748

Sample Output

Armstrong
Not Armstrong
Armstrong

