In graph theory. the **lowest common ancestor** (**LCA**) of two distinct nodes v and w in a rooted tree is the lowest (i.e. deepest) node that has both v and w as descendants, where we define each node to be a descendant of itself (so if v has a direct connection from w, w is the lowest common ancestor).

For example, on the above tree (depicted from case 1) LCA(3,5) = 1, LCA(7,10) = 5, LCA(6,5) = 5, etc.

In this problem, given a Forest, i.e. a disjoint union of rooted trees, you have to find out for each node u how many distinct pair of nodes (v, w) exist such that LCA(v, w) would be u. You should assume that both (v, w) and (w, v) are same pair.

Input

First line of input file contains number of test cases, $T \leq 100$ and T cases follow. Each case starts with an integer N ($1 \leq N \leq 10000$), number of nodes in the forest. Next line contains N integers, p_1 , p_2 , \ldots , p_N ($0 \leq p_i \leq N$), where p_i is the parent of *i*-th ($1 \leq i \leq N$) node in a rooted tree of the forest. If $p_i = 0$ then node *i* is a root in rooted tree.

Output

For each case, print the forest number starting from 1 and number of LCA pair for each node (ordered by node number) separated by space. See the sample output for exact formatting.

Output Explanation

In case 2, in the given forest among the two trees rooted at 2 and 3, there is no pair for which LCA is 1 or 3. For pair (1, 2) LCA is 2. So, total pair for 2 is 1.

In case 3, for pair (1,2), (1,3), (1,4), (2,4), (3,4) *LCA* is 1. For only pair (2,3) *LCA* is 2. There is no pair for which *LCA* is 3 or 4.

Sample Input

```
4
10
0 1 2 1 1 5 6 6 8 5
3
2 0 0
4
0 1 2 1
4
0 1 0 3
```

Sample Output

Forest#1: 29 1 0 0 9 5 0 1 0 0 Forest#2: 0 1 0 Forest#3: 5 1 0 0 Forest#4: 1 0 1 0