Factorial n is written as $n!$ and $n!=1 * 2 * 3 * \ldots *(n-1) * n$. For example $2!=1 * 2=2,3!=1 * 2 * 3=6$, $5!=120,10!=3,628,800$, etc. The function f zero (n) denotes the number of trailing zeroes in $n!$ in decimal number system. For example fzero $(2)=0$, fzero $(5)=1, f z e r o(10)=2$. Given the domain of the input parameter v of $f z e r o(v)$ function, you will have to find out how many different values of $f z e r o()$ are there within this range.

Input

The input file contains at most 50001 lines of inputs. Each line contains two positive integers low and high $\left(0<\right.$ low $\left.\leq h i g h \leq 9 * 10^{18}\right)$. Input is terminated by a line containing two zeroes.

Output

For each line of input produce one line of output. This line contains an integer D, which denotes how many different values the function f zero (v) can have if (low $\leq v \leq h i g h)$.

Note:

Illustration for Sample input 1: as $1!=1,2!=2,3!=6,4!=24,5!=120,6!=720,7!=5,040,8$! $=40,320,9!=362,880,10!=3,628,800$, so $\operatorname{fzero}(1)=0$, fzero $(2)=0$, fzero $(3)=0, f z e r o(4)=0$, $f z \operatorname{ero}(5)=1, f \operatorname{zero}(6)=1, f z \operatorname{ero}(7)=1, f z \operatorname{ero}(8)=1, f z \operatorname{ero}(9)=1$ and $f z \operatorname{zero}(10)=2$. So in this range (1 to 10) there are three different values of $f z e r o(v): 0,1$ and 2 .

Sample Input

110
13
00

Sample Output

