Alan is building a small 3D modeling program that aims to be ex practical problems. However, he is stuck with the "knife" operation:
given a mesh, a plane and a point, the knife operation
with the plane, and removes the part that is in the same half-space
Knowing that programs written in ACM/ICPC competitions ar
usually very compact, Alan comes for your help. In this problem, you only need to deal with "nice"
solid polygonal meshes (3D experts told you that pure triangular meshes are too restrictive for
ike this \qquad
There will be no duplicated vertices/edges/faces.
Faces are planar convex polygons, usually triangles or quads
. The mesh is an orientable manifold without boundary.
The faces enclose a non-empty connected part of space (so we say it's "solid"), and there will be
For those of you who are unfamiliar with terms in point 3, it means:
5. Every edge is incident to exactly two faces. So when you walk across an edge from a face, you
will not directly reach the back side of that face (hence "no boundary").
6. The faces incident to a vertex form a closed fan, see below. Note that if the faces form an open
fan, the boundary edges are violating point 7 because they are incident to only one face.

7. It's not something like the famous Mobius band

Note that despite the nice properties above, those "real-world" meshes are still not easy to deal
\qquad
Two adjacent faces (i.e. share a common edge) can be co-planar (but not overlapping)
\qquad way from the solid
\qquad Input
The input will contain at most 25 test cases. Each test case begins with two integers $n, f(4 \leq n \leq 1,000$; $4 \leq f \leq 1,000$), the number of vertices and faces. Each of the following n lines contains three real
numbers x, y, z, the coordinates of the vertices. Each of the following f lines describes a face. Each ine contains a sequence of integers beginning with $v(3 \leq v \leq 10)$, the number of vertices in the face
(vertices are numbered 1 to n), followed by a sequence of vertices in the face. The faces are guaranteed o form a single connected solid.
\qquad z_{4} that mans
$P_{3}\left(x_{3}, y_{3}, z_{3}\right)$, and you need to remove the half-space containing point $P_{4}\left(x_{4}, y_{4}, z_{4}\right)$. It is guaranteed
that $P_{1} P_{2} P_{3}$ is a valid triangle, and P_{4} is not on the plane of $P_{1} P_{2} P_{3}$. Coordinates have absolute values not greater than 100 .
\qquad enough precision, so you don't have to worry about precision problems like seemingly non-planar faces.
Furthermore, the distance between any mesh vertex and the cut-plane is at least 0.01 , so don't worry
about degenerated cases. Output
\qquad
Line 1: The number of connected solids after cut.
Line 2: The volumes of these solids, in decreasing order.
Line 3: The surface areas of these solids, in decreasing orde
It is guaranteed that the resulting solids will not touch each other. If nothing is left after cut, line
Next two lines are about the cross-section.
Line 5: The areas of these connected regions, in decreasing order
Note that adjacent co-planar faces in the cross-section should be considered as in the same connected
If the cross-section is empty, line 5 should be empty.
error of up to 10^{-3} is allowed. It is guaranteed that all these volumes and areas are greater than 10^{-2}.
Explanation: The second case is:

Note: Be sure that your program can handle complex meshes like this one (one of judge test case):

Sample Input

Sample Output

