The number of ways in which r objects can be chosen from n different objects can be found using the formula $\binom{n}{r}=\frac{n!}{r!(n-r)!}$.

For example $\binom{5}{3}=10,\binom{10}{0}=1,\binom{15}{14}=15$, etc. Now if n varies from low to high and r varies from 0 to n, then you have to find out how many values of $\binom{n}{r}$ are odd. In other words you will have to find out the value of $\sum_{n=\text { low }}^{\text {high }} \sum_{r=0}^{n}\binom{n}{r} \bmod 2$, here mod is the standard modulus or reminder operation.

Input

The input file contains at most 50,000 lines of inputs. Each line contains two positive integers low and high ($0 \leq$ low $\leq h i g h \leq 16 * 10^{11}$). Input is terminated by a line containing two zeroes.

Output

For each line of input, produce one line of output. This line contains an integer D which prints the desired value. You can safely assume that this output will fit in a 64 -bit unsigned integer.

Note:

Illustration for Sample input 1: $\binom{2}{0}=1,\binom{2}{1}=2,\binom{2}{2}=1,\binom{3}{0}=1,\binom{3}{1}=3,\binom{3}{2}=3,\binom{3}{3}=1$, and of these seven values, six (6) are odd.

Sample Input

23
1020
100200
00

Sample Output

6
70
2510

