Professor Hasmot Ali loves to play string related problem. He assigns an easy lab task to his students. But they think it's a hard problem. I know you are very smart. You can help his students to solve this problem.

Given a string S, containing only lowercase English letters. There will be Q queries. Each line of query will contain two space separated strings, X and Y. For every query, your task is to calculate, how many distinct substrings of S which start with X and end with Y.
[Substring definition: A substring is any contiguous portion of a string. A substring may be empty, or the entire string]

For Example:
Given a string $S=$ "abab". There are total 8 distinct substrings. The list is below:
$[0]=$ "a"
$[1]=$ "ab"
[2] = "aba"
[3] = "abab"
$[4]=$ "b"
$[5]=$ "ba"
$[6]=$ "bab"
$[7]="$

There are 3 queries:
1st Query: $X=$ "a" and $Y=$ "a".
There are 2 distinct substring of S , satisfy the condition($[0]=$ "a" and $[2]=$ "aba").
2nd Query: $X=$ "a" and $Y=" \mathrm{~b}$ ".
There are 2 distinct substring of S, satisfy the condition. ($[1]=$ "ab" and $[3]=$ "abab").
3rd Query: $X=$ "ba" and $Y=$ "ab".
There is only one distinct substring satisfy the condition. $([6]=$ "bab" $)$.

Input

Input start with an integer $T(\leq 3)$, denoting the number of test cases.
Each case starts with a line containing string $S(1 \leq \operatorname{length}(S) \leq 1000)$. The next line contains an integer $Q(1 \leq Q \leq 50000)$. Each of the next Q line contains two strings $X(1 \leq l e n g t h(X) \leq 10)$ and $Y(1 \leq \operatorname{length}(Y) \leq 10)$.

Output

For each query you have to print the number of distinct substring of S, which are start with X and end with Y.

Sample Input

1
abab
3
a a
a b
ba ab

Sample Output

