In chess, King is the most important piece. It can move left, right, up, down or diagonally, but only one square at a time, shown below.


Given two squares $A\left(r_{1}, c_{1}\right), B\left(r_{2}, c_{2}\right)$, your task is to calculate the number of moves needed to move a king from $A$ to $B$. To make the problem (slightly) harder, one square $C\left(r_{3}, c_{3}\right)$ is removed from the chessboard, that means the king should never go into square $C$ during his trip. In this problem, rows are numbered $1 . .8$ from bottom to top, and columns are numbered $1 . .8$ from left to right.

## Input

There will be at most 10000 test cases. Each case contains 6 integers $r_{1}, c_{1}, r_{2}, c_{2}, r_{3}, c_{3}(1 \leq$ $\left.r_{1}, c_{1}, r_{2}, c_{2}, r_{3}, c_{3} \leq 8\right)$. Three squares $A, B, C$ are always distinct.

## Output

For each test case, print the case number and the minimum number of moves needed.

## Sample Input

118756
113322

## Sample Output

Case 1: 7
Case 2: 3

