Alice and Bob are walking in an ancient maze with a lot of caves and one-way passages connecting them. They want to go from cave 1 to cave n. All the passages are difficult to pass. Passages are too small for two people to walk through simultaneously, and crossing a passage can make it even more difficult to pass for the next person. We define d_{i} as the difficulty of crossing passage i for the first time, and a_{i} as the additional difficulty for the second time (e.g. the second person's difficulty is $d_{i}+a_{i}$).

Your task is to find two (possibly identical) routes for Alice and Bob, so that their total difficulty is minimized.

For example, in figure 1, the best solution is $1 \rightarrow 2 \rightarrow 4$ for both Alice and Bob, but in figure 2, it's better to use $1 \rightarrow 2 \rightarrow 4$ for Alice and $1 \rightarrow 3 \rightarrow 4$ for Bob. It's always possible to reach cave n from cave 1.

Input

There will be at most 200 test cases. Each case begins with two integers $n, m(1 \leq n \leq 500,1 \leq m \leq$ 2000), the number of caves and passages. Each of the following m lines contains four integers u, v, d_{i} and $a_{i}\left(1 \leq u, v \leq n, 1 \leq d_{i} \leq 1000,0 \leq a_{i} \leq 1000\right)$. Note that there can be multiple passages connecting the same pair of caves, and even passages connecting a cave and itself.

Output

For each test case, print the case number and the minimal total difficulty.

Sample Input

44
1251
2460
1340
3491
44
12510
24610
13410
34910

Sample Output

Case 1: 23
Case 2: 24

