Given a circular arc (i.e. part of the circumference of a circle) and a point P, your task is to calculate the shortest distance between them. That means, you should find a point on the arc, whose distance to P is minimized.

Attention: Try to use exact algorithms. Approximation algorithms are harder to pass the judge data.

Input

There will be at most 10000 test cases. Each case contains 8 integers $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, x_{p}, y_{p}$. The arc starts from $A\left(x_{1}, y_{1}\right)$, goes through $B\left(x_{2}, y_{2}\right)$ and ends at $C\left(x_{3}, y_{3}\right)$. The point is located at $\left(x_{p}, y_{p}\right)$. It is guaranteed that A, B, C are different points and will not be collinear. The absolute values of all coordinates are not greater than 20 .

Output

For each test case, print the case number and the distance, to three decimal places. Absolute error of 0.001 is allowed.

Sample Input

```
0 0 1 1 2 0 1 -1
```

$3405-3401$

Sample Output

Case 1: 1.414
Case 2: 4.000

