Every convex polygon, with $2 N$ vertices, can be decomposed into $N-1$ quadrilaterals, by making $N-2$ straight line cuts between certain pairs of vertices. The figure below shows three different decompositions of the same polygon with $N=5$. The weight of the decomposition is the sum of the lengths of its $N-2$ cuts. Your program should compute the weight of a minimum weight decomposition!

Input

The input contains several test cases. The first line of a test case contains one integer $N(2 \leq N \leq 100)$. The following $2 N$ lines contain, each one, two real numbers X and $Y(0 \leq X, Y \leq 10000)$, with precision of 4 decimal digits: the coordinates of the $2 N$ points, in counterclockwise order, of the convex polygon.

Output

For each test case in the input your program must output one line containing a real number, with 4 decimal digits precision. The number should be the weight of a minimum weight decomposition of the given polygon.

Sample Input

4
5715.75843278 .6962
3870.55354086 .7950
3823.21044080 .7543
3574.4323170 .2905
4521.4796144 .9156
4984.6486306 .2896
5063.1061347 .1661
6099.99592095 .9358

2
6044.47372567 .9978
5752.56353226 .5140
5148.82423802 .9292
4598.80424036 .8000

Sample Output

4519.6176
0.0000

