In recent weeks, geek tabloids have hit the newsstands around the world with a truly remarkable breakthrough in science: a group of researchers from Chinese universities have written a paper about the role of psychology in winning (or losing) at rock-paper-scissors (RPS). After studying how players change or keep their strategies during multiple-round sessions, the scientists figured out a basic rule that people tend to play by that could potentially be exploited. This rule is called the win-stay and lose-shift strategy.

An RPS session is a finite sequence of rounds played between two opponents. In each round, players simultaneously form one of three shapes with an outstretched hand: rock (R), paper (P), and scissors (S). Rock beats scissors, scissors beat paper, and paper beats rock; if both players throw the same shape, the round is tied. The outcome of a round for a player is 1 point if he/she wins, -1 point if he/she loses, and 0 points if it is a tie. The outcome of a session for a player is the sum over the outcome points of his/her rounds. For example, assume that a and b are playing a session of three rounds. In the first round a plays scissors and b plays paper; in the second round a plays paper and b plays paper; and, in the last round a plays rock and b plays rock. Then, the outcome of the first round for a is 1 point (for b is -1 point), and the outcomes of the second and third rounds for a is 0 points (for b is also 0 points). Consequently, the outcome of this session for a is 1 point and for b is -1 point.

During an RPS session, the win-stay and lose-shift strategy for a player p is as follows:

- If it is the first round or if it was a tie in the previous round, for the current round p makes a guess.
- If p lost in the previous round, for the current round p switches to the thing that beats p 's opponent previous choice.
- If p won in the previous round, for the current round p switches to the thing that beats p 's previous choice.

For example, assume that a and b are playing a session of three rounds, and a is playing under the win-stay and lose-shift strategy and that b plays as above. Initially a guesses R and loses (P beats R). In the second round a switches to S because it beats b 's previous winning choice (i.e., P) and wins (S beats P). In the third round a switches to R because it beats a 's previous choice (i.e., S) and ties (b also plays R). In this session the outcome for a is 0 points. However, this is not the only possible outcome for a under the win-stay and lose-shift strategy.

Given a session of n rounds for players a and b, and the probabilities of a guessing R, P, and S during the session, you are asked to write a program that decides if a 's expected session outcome when playing under the win-stay and lose-shift strategy against b is better than a 's actual session outcome.

Input

The first line of the input contains a non-negative integer number $N(N \geq 0)$ indicating the number of test cases. Then N test cases follow, each consisting of three lines of input. The first and second lines of a test case contain, respectively, strings a and b only containing characters R, P , and $\mathrm{S}\left(1 \leq|a| \leq 10^{4}\right.$, $1 \leq|b| \leq 10^{4}$, with $\left.|a|=|b|\right)$ defining an RPS session of $|a|$ rounds played between players a and b. The third line of a test case contains three blank-separated integer numbers p_{R}, p_{P}, and $p_{S}\left(0 \leq p_{R} \leq 100\right.$, $0 \leq p_{P} \leq 100,0 \leq p_{S} \leq 100$, with $p_{R}+p_{P}+p_{S}=100$) indicating, respectively, the probability (amplified by 100) of a guessing rock, scissors, and paper.

Output

For each test case output a single line containing three blank-separated quantities of the form
$x y z$
where

- x is an integer indicating a 's actual session outcome against b,
- y is a floating point number indicating a 's expected session outcome when playing against b with probabilities p_{R}, p_{P}, and p_{S} under the win-stay and lose-shift strategy (rounded up to exactly 4 decimal places, with no leading zeroes but at least one digit before the decimal point), and
- z is the character ' Y ' if y is strictly greater than x, and ' N ', otherwise.

Sample Input

4
SPR
PPR
58015
RRR
PPR
58015
S
S
3433
S
S

Sample Output

10.3060 N

-2 0.3060 Y
$0-0.0100 \mathrm{~N}$
00.0100 Y

