For a positive integer n, let $S(n)$ be the string defined by the concatenation of the decimal notations (without leading zeroes!) of $1,2, \ldots, n$. For instance, $S(11)=1234567891011$.

An (arithmetic) formula F is an n-alternation if it is built inserting in the string $S(n)$ arithmetic operators,+ - and parentheses (,). Besides of that, it is required that the used arithmetic operators occur alternately in F.

An n-alternation, being an arithmetic formula, has an integer value. The following are two examples of 11-alternations with the indicated values:

$$
\begin{aligned}
1-(2+3)-4+5-6+7-8+9-1+0-11 & =-13 \\
-1+2-3+4-5+6-7+89-1+011 & =95
\end{aligned}
$$

Let's consider the following puzzle: given two integers n and $m(n>0)$, decide if there exists an n-alternation F that evaluates to m. From the examples above it is clear that it is possible to build 11 -alternations that evaluate to -13 and 95 . However, it is easy to see that it is impossible to find a 3 -alternation that evaluates to 10 .

In order to be precise in the description of the required task, an (arithmetic) formula is defined as follows:

- The empty string is not a formula.
- A numeric string, i.e., a string made of digits $0 \ldots 9$, with at most 5 of them, is a formula.
- If α and β are formulae, then $\alpha+\beta$ and $\alpha-\beta$ are formulae.
- If α is a formula, then $+\alpha,-\alpha$ and (α) are formulae.

Input

The input consists of several test cases, each one defined by a line containing two blank-separated integers n and $m\left(1 \leq n \leq 100,-10^{7} \leq m \leq 10^{7}\right)$.

Output

For each test case, print a line with the character ' Y ' if there exists an n-alternation F that evaluates to m, or with the character ' N ', otherwise.

Sample Input

$11-13$
1195
310

Sample Output

