You are given an array of N integers: $A_{1}, A_{2}, \ldots, A_{N}$. You have to process Q queries on this array, where a query will be a pair of integers (L, R).

For each query, you have to find the count of Divisor-free numbers in the number sequence S, where $S=A_{L}, A_{L+1}, \ldots, A_{R}$. A number A_{i} from the sequence S will be called Divisor-free if there is no A_{j} $(i \neq j)$ in S such that A_{j} is a divisor A_{i}.

Input

The first line of the input contains an integer $T(T \leq 5)$ denoting the number of test cases. The first line of each test case contains two integers N and $Q\left(1 \leq N, Q \leq 10^{5}\right)$. The following line contains N space separated integers $A_{1}, A_{2}, \ldots, A_{N}$ where $1 \leq A_{i} \leq 10^{6}$. In each of the next Q lines, there will be two integers (L, R) representing a query $(1 \leq L \leq R \leq N)$.

Output

For each test case, print the case number in the format 'Case X :' (here, X is the serial of the test case). Then print Q lines containing the answer for each query.

Sample Input

2
105
46275111421132
26
48
28
37
49
53
46815
15
23
33

Sample Output

Case 1:
4
3
4
4
4
Case 2:
1

