Initially, there is an empty tree. You add n nodes to the tree, one by one.
After each node is added, print the number of accessible node pairs.
Two different nodes i and j are accessible if and only if $\operatorname{dist}(i, j) \leq r(i)+r(j)$, where $\operatorname{dist}(i, j)$ is the length of unique path from i and j.

Note that a node and itself is NOT an accessible node pair.
Nodes are numbered $1,2,3, \ldots$ in the same order as they are added.

Input

The first line contains $n(2 \leq n \leq 100000)$, the number of total nodes.
There are n lines followed. The i-th line contains three integer $a(i), c(i), r(i)$, that means node i is connected with node $f(i)=a(i) X O R$ (last_ans $\left.\bmod 10^{9}\right)$, edge weight is $c(i)$, range value is $r(i)$ $\left(1 \leq r(i) \leq 10^{9}\right)$.

Note that node 1 is not connected with any node, so we define $a(1)=c(1)=0$. For other nodes (i.e. $i \geq 2$), $1 \leq f(i)<i, 1 \leq c(i) \leq 10000,0 \leq a(i) \leq 2 * 10^{9}$. For each test case, last_ans is initially 0.

Output

The output for each test case contains $n+1$ lines. The first line contains the case number, the $(i+1)$-th line is the number of accessible pairs after node i is added. Print a blank line after each test case (including the last one).

Sample Input

```
5
0 6
1 24
0 94
O5
0 24
5
0 6
1 24
0 94
055
0 24
0
```


Sample Output

```
Case 1:
```

0
1
2
4
7
Case 2:
0
1
2
4
7

