
Initially, there is an empty tree. You add n nodes to the tree, one by one.
After each node is added, print the number of accessible node pairs.
Two different nodes i and j are accessible if and only if dist(i, j) ≤ r(i) + r(j), where dist(i, j) is

the length of unique path from i and j.
Note that a node and itself is NOT an accessible node pair.
Nodes are numbered 1, 2, 3, . . . in the same order as they are added.

Input

The first line contains n (2 ≤ n ≤ 100000), the number of total nodes.
There are n lines followed. The i-th line contains three integer a(i), c(i), r(i), that means node

i is connected with node f(i) = a(i)XOR(last ans mod 109), edge weight is c(i), range value is r(i)
(1 ≤ r(i) ≤ 109).

Note that node 1 is not connected with any node, so we define a(1) = c(1) = 0. For other nodes
(i.e. i ≥ 2), 1 ≤ f(i) < i, 1 ≤ c(i) ≤ 10000, 0 ≤ a(i) ≤ 2 ∗ 109. For each test case, last ans is initially
0.

Output

The output for each test case contains n+1 lines. The first line contains the case number, the (i+1)-th
line is the number of accessible pairs after node i is added. Print a blank line after each test case
(including the last one).

Sample Input

5

0 0 6

1 2 4

0 9 4

0 5 5

0 2 4

5

0 0 6

1 2 4

0 9 4

0 5 5

0 2 4

0

Sample Output

Case 1:

0

1

2

4

7

Case 2:

0

1

2

4

7


