You are given the coordinates of a triangle lying on a 2D Cartesian plane. The whole plane can be divided into square blocks of 1×1 size. Your job is to find out how many of the 1×1 square blocks have at least 50% of its area inside the triangle.

The picture below shows a triangle where the vertices are at $(0,1),(9,3)$ and $(3,8)$. And the shaded squares are the squares with at least 50

Input

The first line of the input contains an integer $T(\leq 100)$ denoting the number of test cases. Each of the following T lines contain six space separated integers $x_{1} y_{1} x_{2} y_{2} x_{3} y_{3}$ giving the coordinates of the triangle. The given coordinates will form a valid triangle with positive area and all the coordinates will be integers having values between 0 and 100 (inclusive).

Output

For each input, print the output in the format 'Case $X: \quad Y^{\prime}$ (here, X is the serial of the input and Y is the number of squares which have at least 50% of its area inside the triangle).

Sample Input

2

019338
114114

Sample Output

Case 1: 29
Case 2: 6

