Little John is very interested about constructing a rooted tree with the following constraints:

1. A tree of depth D means that the tree should contain at least 1 node which is exactly D distance away from the root and there is no node of more than D distance from the root.
2. The degree of a node of the tree cannot be greater than V. Degree of a node is simply measured by the number of nodes it is directly connected to, via a single edge.

John wonders about the maximum number of nodes in a tree following the rules described above. For example, if $D=1$ and $V=2$, then the maximum number of nodes in the tree is 3 .

Input

First line of the input contains a positive integer $T(T \leq 150)$. Each of the following T lines contains two integers $D\left(0 \leq D \leq 2 * 10^{9}\right)$ and $V\left(1 \leq V \leq 2 * 10^{9}\right)$, respectively.

Output

For each case, print a line of the form 'Case $\langle x\rangle$: $\langle y\rangle$ ', where x is the case number and y is the maximum possible number of nodes in the tree. As the value of y can be quite large, print the value modulo $1000000007\left(10^{9}+7\right)$. If it is not possible to construct the tree, print 'Case $<x>$: -1 '.

Sample Input

3
01
12
15

Sample Output

Case 1: 1
Case 2: 3
Case 3: 6

