Given 2 permutations of integers from 1 to $N$, you need to find the minimum number of operations necessary to change both or any one of them in such a way that they become exactly same. Here only two operations are allowed: either you can delete an integer from any position or you can insert an integer into any position, but replacing one integer by another one is not allowed.

Say, $N=5$ and the permutations are $\{1,3,5,4,2\}$ and $\{1,5,4,3,2\}$. Then we need just 2 operations: we need to delete 3 from the 2 nd position and insert it in the 4th position of the first permutation, or we can delete 3 from both the permutations, which also needs two operations.

## Input

First line of the input contains a positive integer $T(T \leq 40)$. Each of the following $T$ cases contains 3 lines for each case: the 1 st line contains a single integer $N(1 \leq N \leq 200,000)$ and the next two lines contain the two permutations of the integers.

## Output

For each case, print a line of the form 'Case $\langle x\rangle$ : $\langle y\rangle$ ', where $x$ is the case number and $y$ is the number of operations necessary to covert the 1st permutation to the 2 nd permutation.

## Sample Input <br> 2 <br> 5 <br> 13542 <br> 15432 <br> 4 <br> 1243 <br> 3421

## Sample Output

Case 1: 2
Case 2: 6

