
Fox Shial loves to collect grids of numbers. One of his favorite grids had been stolen recently. It had
R rows and C columns and the grid had every integers in the range 1 to R ∗ C exactly once in some
arbitrary order.

For each integer n in the range 1 to R ∗C (inclusive), Fox Shial remembers the numbers that were
adjacent to n in the stolen grid. A cell (x, y) is adjacent to at most four other cells (x−1, y), (x+1, y),
(x, y − 1), (x, y + 1).

Your task is to reconstruct the grid for Shial. If there are multiple possible grids, find the one that
is lexicographically smallest.

A grid G1 is lexicographically smaller than some other grid G2, if the following condition holds true:
If we traverse both of the grids in the row major order and if (x, y) is the first cell where the

G1[x][y] < G2[x][y], then G1[x][y] < G2[x][y]. (Here, (x, y) denotes the cell at row x and column y).

Note: Any cell (x1, y1) comes before (x2, y2) in a row major order, if and only if either (x1 < x2) or
(x1 == x2 and y1 < y2) holds true.

Input

The first line contains an integer T denoting the number of test cases. Each test case begins with a
line containing 2 integers R and C where R is the number of rows and C is the number of columns in
the stolen grid. Each of the next R ∗ C lines contains a list of numbers. The i-th line starts with an
integer ki and then ki distinct space-separated integers follow. All these integers will be in the range 1
to R ∗C (inclusive). Here ki is the number of integers adjacent to the number i in the stolen grid. The
numbers following ki are all of those adjacent integers in an arbitrary order. It is guaranteed that, if
some integer u is adjacent to some other integer v, then v is also adjacent to u. No integer is adjacent
to itself.

Constraints:
1 ≤ T ≤ 40
1 ≤ R,C ≤ 100
0 ≤ ki ≤ 4

Output

For the output of each input case, print the serial of the input on a single line and then print the grid
in the following format.

Each row should be printed on a different line. Every number of a row should be printed with
exactly 1 space between the numbers. There should be no space at the end of a row. (See the sample
input output).

If the given input is invalid (i.e. there is no grid that satisfies the given adjacency information) print
‘NO SUCH GRID’ (without quote).

Sample Input

2

2 2

2 3 4

2 3 4

2 1 2

2 1 2

1 3

2 2 3

2 1 3

2 1 2

Sample Output

Case 1:

1 3

4 2

Case 2:

NO SUCH GRID


