Fox Shial loves to collect grids of numbers. One of his favorite grids had been stolen recently. It had R rows and C columns and the grid had every integers in the range 1 to $R * C$ exactly once in some arbitrary order.

For each integer n in the range 1 to $R * C$ (inclusive), Fox Shial remembers the numbers that were adjacent to n in the stolen grid. A cell (x, y) is adjacent to at most four other cells $(x-1, y),(x+1, y)$, $(x, y-1),(x, y+1)$.

Your task is to reconstruct the grid for Shial. If there are multiple possible grids, find the one that is lexicographically smallest.

A grid G_{1} is lexicographically smaller than some other grid G_{2}, if the following condition holds true: If we traverse both of the grids in the row major order and if (x, y) is the first cell where the $G_{1}[x][y]<G_{2}[x][y]$, then $G_{1}[x][y]<G_{2}[x][y]$. (Here, (x, y) denotes the cell at row x and column y).
Note: Any cell $\left(x_{1}, y_{1}\right)$ comes before $\left(x_{2}, y_{2}\right)$ in a row major order, if and only if either $\left(x_{1}<x_{2}\right)$ or ($x_{1}==x_{2}$ and $y_{1}<y_{2}$) holds true.

Input

The first line contains an integer T denoting the number of test cases. Each test case begins with a line containing 2 integers R and C where R is the number of rows and C is the number of columns in the stolen grid. Each of the next $R * C$ lines contains a list of numbers. The i-th line starts with an integer k_{i} and then k_{i} distinct space-separated integers follow. All these integers will be in the range 1 to $R * C$ (inclusive). Here k_{i} is the number of integers adjacent to the number i in the stolen grid. The numbers following k_{i} are all of those adjacent integers in an arbitrary order. It is guaranteed that, if some integer u is adjacent to some other integer v, then v is also adjacent to u. No integer is adjacent to itself.

Constraints:

$1 \leq T \leq 40$
$1 \leq R, C \leq 100$
$0 \leq k i \leq 4$

Output

For the output of each input case, print the serial of the input on a single line and then print the grid in the following format.

Each row should be printed on a different line. Every number of a row should be printed with exactly 1 space between the numbers. There should be no space at the end of a row. (See the sample input output).

If the given input is invalid (i.e. there is no grid that satisfies the given adjacency information) print 'NO SUCH GRID' (without quote).

Sample Input

2
22
234
234
212
212
13
223
213
212

Sample Output

Case 1:
13
42
Case 2:
NO SUCH GRID

