Fox Shial loves to collect grids of numbers. One of his favorite grids had been stolen recently. It had R rows and C columns and the grid had every integers in the range 1 to R * C exactly once in some arbitrary order.

For each integer n in the range 1 to R * C (inclusive), Fox Shial remembers the numbers that were adjacent to n in the stolen grid. A cell (x, y) is adjacent to at most four other cells (x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1).

Your task is to reconstruct the grid for Shial. If there are multiple possible grids, find the one that is lexicographically smallest.

A grid G_1 is lexicographically smaller than some other grid G_2 , if the following condition holds true: If we traverse both of the grids in the row major order and if (x, y) is the first cell where the $G_1[x][y] < G_2[x][y]$, then $G_1[x][y] < G_2[x][y]$. (Here, (x, y) denotes the cell at row x and column y).

Note: Any cell (x_1, y_1) comes before (x_2, y_2) in a row major order, if and only if either $(x_1 < x_2)$ or $(x_1 = x_2 \text{ and } y_1 < y_2)$ holds true.

Input

The first line contains an integer T denoting the number of test cases. Each test case begins with a line containing 2 integers R and C where R is the number of rows and C is the number of columns in the stolen grid. Each of the next R * C lines contains a list of numbers. The *i*-th line starts with an integer k_i and then k_i distinct space-separated integers follow. All these integers will be in the range 1 to R * C (inclusive). Here k_i is the number of integers adjacent to the number *i* in the stolen grid. The numbers following k_i are all of those adjacent integers in an arbitrary order. It is guaranteed that, if some integer *u* is adjacent to some other integer *v*, then *v* is also adjacent to *u*. No integer is adjacent to itself.

Constraints:

 $\begin{array}{l} 1 \leq T \leq 40 \\ 1 \leq R, C \leq 100 \\ 0 \leq ki \leq 4 \end{array}$

Output

For the output of each input case, print the serial of the input on a single line and then print the grid in the following format.

Each row should be printed on a different line. Every number of a row should be printed with exactly 1 space between the numbers. There should be no space at the end of a row. (See the sample input output).

If the given input is invalid (i.e. there is no grid that satisfies the given adjacency information) print 'NO SUCH GRID' (without quote).

Sample Input

Sample Output

Case 1:		
1 3	3	
4 2	2	
Case 2:		
NO	SUCH	GRID