Searching for patterns is a very attractive field. Who didn't wish to discover the patterns of Grameen Phone recharge cards!

In this problem, first, you have to know how patterns can be subsequence of a given string. Suppose S and P are two strings. Here P will be subsequence of S if P can be derived from S by deleting some elements without changing the order of the remaining elements.

For example,
S = BLEALBIE
| | | |
$P=B L A I$
So, P (BLAI) is a subsequence of S (BLEALBIE).
We define the "First Lookup Subsequence" as follows:
For each character, $c[i](0 \leq i<|P|$, for a string $X,|X|=$ length of $X)$, in P, we mark the first occurrence of $c[i]$ in S and write down the positions of $c[i]$ in S as, $\operatorname{pos}[0], \operatorname{pos}[1]$, $\ldots, \operatorname{pos}[|P|-1]$, where $\operatorname{pos}[i]$ denotes the index in S where $c[i]$ is first located (left to right searching). If these values form an increasing series, that is, $\operatorname{pos}[0]<\operatorname{pos}[1]<\operatorname{pos}[2]<$ $\ldots<\operatorname{pos}[|P|-1]$, then we say that S contains P as a "First Lookup Subsequence".

In this problem, you will be given two strings, S and P, containing only uppercase letters of English alphabet (A-Z). Each character of S is distinguishable, that is, two 'A's are considered different. (You can assume all letters are of different colors! so that they are distinguishable). Each character in P is distinct. Your job is to find how many permutations of S contain P as a First Lookup Subsequence. Be careful about the permutations of S. Although two strings might look same, they can be of different permutations.

For example, for a string, $S=$ AAE, we assume 3 different colors.
A(red) A(blue) E(purple)

So it has 6 different permutations

1. A(red)	A(blue)	E(purple)	\Rightarrow AAE
2. A(red)	E(purple)	A(blue)	\Rightarrow AEA
3. A(blue)	A(red)	E(purple)	\Rightarrow AAE
4. A(blue)	E(purple)	A(red)	\Rightarrow AEA
5. E(purple)	A(red)	A(blue)	\Rightarrow EAA
6. E(purple)	A(blue)	A(red)	\Rightarrow EAA

If we search the pattern $P(\mathrm{AE})$, as a First Lookup Subsequence in all these permutations, permutation 1, 2, 3, 4 will contain P as a First Lookup Subsequence.

So the number of permutations of S, that contain P as a First Lookup Subsequence, is 4 .

Input

The first line of input contains a single integer, $T(T \leq 100)$, denoting the number of test cases to process. Next, there are T test cases. Each contains two strings S and P in separate lines. Here, $0<|S| \leq 500,0<|P| \leq 26$. All the letters in S and P will be uppercase English letters (A-Z). All the letters in P will be distinct.

Output

For each case, print a line of output in the following format:
Case n: m
Where n is the test case number and m is the output modulo 100007 .

Sample Input

5
AAE
AE
AADE
DE
AADEBG
GDA
A
A
EEEEEE
E

Sample Output

Case 1: 4

Case 2: 12
Case 3: 60
Case 4: 1
Case 5: 720

