Some time ago, Dejan Stojanovic, a Serbian poet, said: "Words rich in meaning can be cheap in sound effects." Is it true? A String Processing professor at UFPE wants to test this quote with strings. For that, he defined what he calls a "cheap B-subsequence". A cheap B-subsequence, according to his definition, is a subsequence of size B, of a string $S(B \leq|S|)$, that has the lowest associated cost. To define the cost of a string, the professor determined a series of rules to each letter of the alphabet. The alphabet that he used contains only lowercase letters. The rule of a letter is defined as a set of pairs $\left(P_{i}, C_{i}\right)$, which indicates that if this letter appears in a position X on the subsequence, where X is a multiple of P_{i}, then the cost of $\left(X / P_{i}\right) * C_{i}$ will be added to the total cost of this subsequence. Let's show an example. Suppose we have the following rules:

$$
\begin{aligned}
{[\mathrm{a}] } & =\{(2,3),(4,10)\} \\
{[\mathrm{b}] } & =\{(1,4),(7,50)\} \\
{[\mathrm{c}] } & =\{(1,2),(4,20)\} \\
{[\mathrm{d} . \mathrm{z}] } & =\{ \} / / \text { there are no rules for the characters ' } \mathrm{d} \text { ' to ' } \mathrm{z} \text { ' }
\end{aligned}
$$

Suppose we have the string 'abaabcbc', and $B=4$. If we choose the subsequence 'aabc' (abaababcbc), we would do the following procedure to calculate the associated cost:

1. The first letter of the sequence is an ' a ', and the position 1 is neither multiple of 2 or 4 , so the cost is 0 ;
2. The second letter of the sequence is another ' a ', and the position 2 is a multiple of 2 , so we'll add the cost of $\left(\frac{2}{2}\right) * 3=3$;
3. The third letter of the sequence is a ' b ', and the position 3 is multiple of 1 , so we will add the cost of $\left(\frac{3}{1}\right) * 4=12$;
4. The last letter of the sequence is a ' c ', and the position 4 is a multiple of 1 and 4 , so we will add the cost of $\left(\frac{4}{1}\right) * 2+\left(\frac{4}{4}\right) * 20=28$.

The total associated cost to this subsequence is 43 , which is not the lowest cost, since we could have chosen aaab (abaabcbc) and obtained an associated cost of 19 - this is indeed the cost of the cheap B-subsequence. Given the string S and the integer B, and the rules of the alphabet, your task is to create a program that tells the professor the cost of the cheap B-subsequence.

Input

The first line contains $T(T \leq 100)$ - the number of test cases, after this line T test cases follows. The first line of a test case contains a string S of lowercase letters and an integer $B(1 \leq B \leq|S| \leq 100)$. Each of the next 26 lines describe the rule of each letter. The first of the 26 lines corresponds to the rule of the letter 'a'; the following line corresponds to the rule of the letter 'b'; the last of the 26 lines corresponds to the rule of the letter ' z '. Each line containing a rule is described in the following way: $Q P_{1} C_{1} P_{2} C_{2} \ldots P_{Q} C_{Q}\left(1 \leq Q \leq 10 ; 1 \leq P_{i} \leq|S| ; 1 \leq C_{i} \leq 50\right)$, where Q is the amount of pairs associated to this rule, and is followed by the pairs themselves.

Output

For each test case print a line containing 'Case $\# X$: $\quad Y^{\prime}$, where X is the case number, starting at 1 , and Y is the cost of the cheap B-subsequence.

Sample Input

2
abcd 1
1120
1115
118
1130
112
0 (21 lines)
abaabcbc 4
223410
$\begin{array}{llll}2 & 1 & 4 & 750\end{array}$
212420
0 (23 lines)

Sample Output

Case \#1: 8
Case \#2: 19

