Natasha always mixes up things in her algorithm classes. Last week Prof. Chhaya Murthy gave the
class a classical problem - finding shortest path to all nodes from a specific node of a weighted graph.
Before that in another class, the professor taught them Prim’s and Dijkstra’s algorithms which are
similar looking but does very different things. Always confused, poor Natasha submitted something
very similar to the Prim’s algorithm (actually we should call it Natasha’s algorithm), she didn’t test it
properly. Pseudocode of her algorithm looks as follows:

function Shortest(Graph, source):

for each vertex vin Graph: J* Initializations */
visited[v] := false;
dist[v] :=infinity ; /* Distance fFunction from source */
previous[v] := undefined ; J* Previous node in optimal path */
ans[v] := undefined; J* Answer array */
end for
dist[source] :=0;
Q:=1{} [* A priority queue which keeps (node, distance)

pairs. When pop is
called always gives the node with smallest distance. In case of a tie, returns the node with
smallest id. =/
Push (source, dist[source]) to Q
while Q is not empty: J* The main loop */
Pop node u from Q;
visited[u] := true;
if dist[u] = infinity:
break ;
end if
fFor each neighbor v of u:
if visited[v] = true:
continue;
end if
alt := edge_cost(u, v) ; /* edge_cost(u, v) = cost of the edge between
vertices u and v */
if alt < dist[v]:
dist[v] := alt;
previous[v] :=u:
Push (v, dist[v]) to Q;
end if
end for
end while
fFor each node node in the graph
answer :=0
u:=node
while previous[u] is defined: /* Traverse the shortest path */
answer := answer + edge_cost(u, previous[u]);
/* edge_cost function as defined earlier */
U := previous[u]
end while ;
ans[node] := answer;
end for
return ans;
endfunction

After submission, she showed the code to a friend who is good at algorithms. That friend immedi-
ately found the flaw. Natasha was really terrified and started to cry. Then there came the guys, the
guys who liked her. They jumped at the opportunity and got hold of the dataset to be used to test the
solutions. Your friend Rehan is one of those guys. He really wanted to impress Natasha. He asked you
to change the dataset in such a way that Natasha’s algorithm gives the right result. After the change,
Rehan will somehow be able to put the modified data with the old timestamp. Rehan told you that:

1. The dataset has T test cases.
2. Each case contains a connected weighted undirected graph with n nodes and m edges.
3. Each case will contain a source node source.

4. Edge weights are positive and distinct.

To avoid suspicion, Rehan asked you not to change which vertices the edges connect, or the overall
set of edge weights. You may only reorder which weights are assigned to which edges.

Input

The first line of the input denotes the number of datasets T (1 < T < 15). T sets of case will follow.
Each case will start with a triplet of numbers n (2 < n < 2500), m (1 < m < 25000) and source
(1 < source < n) — the number of nodes, the number of edges and the starting node respectively.
Each of the next m lines will contain a triplet of numbers (u,v,w) meaning that there is an edge
between node u and node v with weight w (1 < w < m). Nodes are numbered from 1 to n. It is
guaranteed that there is no duplicate or self-edges in the input and the graph is connected. In each
given graph, all edge weights will be distinct.

Output

For each set of input, print one set of output. First line of a set should be of the format, ‘Case X:’
where X is the case number. Then print each edge triplet — one triplet (u, v and w) in each line
separated by a single space. The edges should be printed in the order given in the input. If there is
more than one solution to a dataset, any one of them will do.

Sample Input

OO oo ~NOOWwN~, NN~
D WK, WNdNDPd PO
W = O N0 NG

Sample Output

Q
v
IS )]
®
-

oo ~N Ul W RN
oWk W BN
N O U R 0 W O~



