Given an integer N, find how many pairs (A, B) are there such that: $\operatorname{gcd}(A, B)=A$ xor B where $1 \leq B \leq A \leq N$.

Here $\operatorname{gcd}(A, B)$ means the greatest common divisor of the numbers A and B. And A xor B is the value of the bitwise xor operation on the binary representation of A and B.

Input

The first line of the input contains an integer $T(T \leq 10000)$ denoting the number of test cases. The following T lines contain an integer $N(1 \leq N \leq 30000000)$.

Output

For each test case, print the case number first in the format, 'Case X :' (here, X is the serial of the input) followed by a space and then the answer for that case. There is no new-line between cases.

Explanation

Sample 1: For $N=7$, there are four valid pairs: $(3,2),(5,4),(6,4)$ and $(7,6)$.

Sample Input

2
7
20000000

Sample Output

Case 1: 4
Case 2: 34866117

