Have you ever been to safari park? It is a zoo-like place where animals are not kept under cage. Visitors
may drive or walk through safari and observe free animals. Even sometimes dangerous animal like lion,

 Their memory is quite ow. To make things less complicated and efficient from processing perspectives
 Place park by monorail. So the triangles may appear in the device in dififerent places. Since the device
is not that much adrance, it can show the regioss but it does oot show any label. One has to enter

$\substack{\text { orner. } \\ \text { For }}$

For example, suppose currently we know about two reginss: Girafe: $(0,0),(0,5),(5,0)$ and
Dolphin: $(10,10),(10,5),(5,10)$. Now if the puery coordinate is $(1,1)$ then it will show Girafe: If

sides completely siver ap valit.	Sharing corners. valid.	Side partially overlap. Invalid	Corner on border Invalid.

Nino two trianges wisl have eommon region If a query point is strictly inside some region you should erne you should print ' -1 '. Details of input and output can be found in corresponding section

Input
First line of the test file contains a positive integer $T(\leq 2)$ which is the number of test cases. First line
of each case contains $N(\leq 300$ ono denotes number of commands. Each command will start with a
 eommands.
However these numbers will not give you the real co-ordinate. You have to decode the given
coordinates using the answer to last query. Suppose d is the answer to the last query Q (Initially coordinates using the answer to last query. Suppose d is the answer to the last query Q (Initially
$d=0)$, then real co-ordinate of given co-ordinate x, y will be: $x+x_{1}[d], y+y_{1}[d]$. Here, $x_{1}[d]$, $y_{1}\left[d\right.$ is the first co-ordinate (decoded) of d th region. d-th region is the ereion provided by $\begin{array}{l}d \text { the } \mathrm{R} \\ \text { command. However, if } d=0 \text { or }-1 \text { (in case of out of region or on boundary } / \text { corner) you should }\end{array}$ command $x^{[d w e v e r, ~}$
consider $x_{1}[d]=y_{1}[d]=0$. A query should be answered considering only the regions provided before
 command will range from - 1 to n, ' ' 1 ' if on boundary / corner, '0' 'if outside of any region and other
number depending on the region in which the point is in. You may assume that the co-rdinates of the regions will almays be in clock wise order. You may also ossume that the regeins woild appear in ompletely random order even though the regions may not be ran
y co-ordinates are non negative and will be bounded by 100,000

Output
For each test case first print case number. Hence for each Q command print the answer of the query.
Do not print any blank line between test cases. For details follow the sample input output. Explanation of sample input:

Sample input	Explanation
8	Initially d $=0$
R000550	Since $d=0$ and $x_{1}[d]=0, y_{1}[d]=0$ Decoded co-ordinates: 000550 In the picture it is ABC triangle
R 1010105510	Since $d=0$ and $x_{1}[d]=0, y_{1}[d]=0$ Decoded co-ordinates: 1010105510 In the picture it is DEF triangle
Q 55	Since $d=0$ and $x_{1}[d]=0, y_{1}[d]=0$ Decoded co-ordinates: 55 This is out of region. Answer is 0 and so $d=0$. In the picture it is G point
Q 11	Since $d=0$ and $x_{1}[d]=0, y_{1}[d]=0$ Decoded co-ordinates: 11 This is in 1st region. Answer is 1 and so $d=1$. In the picture it is H point
Q 99	Since $d=1$ and $x_{1}[d]=0, y_{1}[d]=0$ Decoded co-ordinates: 99 This is in 2nd region. Answer is 2 and so $d=2$. In the picture it is I point
$\mathrm{R}-6$ - 4-4-6-6-6	Since $d=2$ and $x_{1}[d]=10, y_{1}[d]=10$ Decoded co-ordinates: 466444 In the picture it is JKL triangle
Q -5-5	$\begin{aligned} & \text { Since } d=2 \text { and } x_{1}[d]=10, y_{1}[d]=10 \\ & \text { Decoded coordinates } 55 \\ & \text { This is on on the boundary of 3rd region. } \\ & \text { Answer is }-1 \text { and so } d=-1 . \\ & \text { In the picture it is } \mathrm{G} \text { point again } \end{aligned}$
Q 11	Since $d=-1$ and $x_{1}[d]=0, y_{1}[d]=0$ Decoded co-ordinates: 11 This is in 1st region. Answer is 1 and so $d=1$. In the picture it is H point again
R054450	Since $d=1$ and $x_{1}[d]=0, y_{1}[d]=0$ Decoded co-ordinates: 054450 In the picture it is BLC triangle
Q 33	Since $d=1$ and $x_{1}[d]=0, y_{1}[d]=0$ Decoded co-ordinates: 33 This is in 4th region. Answer is 4 and so $d=4$. In the picture it is M point

Sample Input
10
${ }^{10} 0$

Sample Output
Case 1

