
Have you ever been to safari park? It is a zoo-like place where animals are not kept under cage. Visitors
may drive or walk through safari and observe free animals. Even sometimes dangerous animal like lion,
tiger are also kept free. I have also opened a safari park of my own. Animals live in different regions
here. Region of one animal does not intersect with regions of other animal for safety purpose. But
two regions may have same boundary though it is not allowed to have the corner point on any other
boundary. The animals are trained so that they do not leave their own territory. Now the safari park
is so big that a single map cannot show the whole place. So I decided to make a device to help people
to find the places of their interest. However, to reduce the cost for device I bought some low end one.
Their memory is quite low. To make things less complicated and efficient from processing perspective,
we have made all the regions triangle. But that is not all. All the regions will not be loaded initially.
Regions will be loaded depending on the visitor’s place. Visitor may visit from one place to another
place park by mono-rail. So the triangles may appear in the device in different places. Since the device
is not that much advance, it can show the regions but it does not show any label. One has to enter
the co-ordinate of a point in a text box and the device will show the label of that region in an alert
message. There are two special labels. ‘0’ denotes outside of any region, ‘-1’ denotes on boundary /
corner.

For example, suppose currently we know about two regions: Giraffe: (0, 0), (0, 5), (5, 0) and
Dolphin: (10, 10), (10, 5), (5, 10). Now if the query co-ordinate is: (1, 1) then it will show Giraffe. If
the query is for (9, 9) the answer will be Dolphin. However if the query is: (5, 5) it will show 0. Now
suppose a new region appears in the map: Lion: (4, 6), (6, 4), (4, 4). Now again if the query is (5, 5)
the answer will be ‘-1’.

So to summarize, you will be given some triangles. Triangle may share side and also corners, but
no triangle will have its corner on any sides of any other triangle, i.e. sides of different triangles can be
identical, but not partially overlapping. You may check the following diagram for clarity:

No two triangles will have common region. If a query point is strictly inside some region you should
print its label, if it is strictly outside all regions you should print ‘0’ and if it is on some boundary /
corner you should print ‘-1’. Details of input and output can be found in corresponding section.

Input

First line of the test file contains a positive integer T (≤ 2) which is the number of test cases. First line
of each case contains N (≤ 300, 000) denotes number of commands. Each command will start with a
‘Q’ or ‘R’. Q stands for query and R stands for region. Q will be followed by 2 integers: xq and yq. R will
be followed by 6 integers: x1 y1 x2 y2 x3 y3. You may assume that there won’t be more than 50,000 R

commands.
However these numbers will not give you the real co-ordinate. You have to decode the given

coordinates using the answer to last query. Suppose d is the answer to the last query Q (Initially
d = 0), then real co-ordinate of given co-ordinate x, y will be: x + x1[d], y + y1[d]. Here, x1[d],
y1[d] is the first co-ordinate (decoded) of d-th region. d-th region is the region provided by d-th R

command. However, if d = 0 or -1 (in case of out of region or on boundary / corner) you should
consider x1[d] = y1[d] = 0. A query should be answered considering only the regions provided before
the corresponding Q command. If there are n R commands before a Q command then answer to this
command will range from -1 to n, ‘-1’ if on boundary / corner, ‘0’ if outside of any region and other
number depending on the region in which the point is in. You may assume that the co-ordinates of
the regions will always be in clock wise order. You may also assume that the regions will appear in
completely random order even though the regions may not be random themselves. Value of decoded
x y co-ordinates are non negative and will be bounded by 100,000.

Output

For each test case first print case number. Hence for each Q command print the answer of the query.
Do not print any blank line between test cases. For details follow the sample input output.

Explanation of sample input:

Sample input Explanation
8 Initially d = 0
R 0 0 0 5 5 0 Since d = 0 and x1[d] = 0, y1[d] = 0

Decoded co-ordinates: 0 0 0 5 5 0

In the picture it is ABC triangle
R 10 10 10 5 5 10 Since d = 0 and x1[d] = 0, y1[d] = 0

Decoded co-ordinates: 10 10 10 5 5 10

In the picture it is DEF triangle
Q 5 5 Since d = 0 and x1[d] = 0, y1[d] = 0

Decoded co-ordinates: 5 5

This is out of region. Answer is 0 and so d = 0.
In the picture it is G point

Q 1 1 Since d = 0 and x1[d] = 0, y1[d] = 0
Decoded co-ordinates: 1 1

This is in 1st region. Answer is 1 and so d = 1.
In the picture it is H point

Q 9 9 Since d = 1 and x1[d] = 0, y1[d] = 0
Decoded co-ordinates: 9 9

This is in 2nd region. Answer is 2 and so d = 2.
In the picture it is I point

R -6 -4 -4 -6 -6 -6 Since d = 2 and x1[d] = 10, y1[d] = 10
Decoded co-ordinates: 4 6 6 4 4 4

In the picture it is JKL triangle
Q -5 -5 Since d = 2 and x1[d] = 10, y1[d] = 10

Decoded co-ordinates: 5 5

This is on the boundary of 3rd region.
Answer is -1 and so d = −1.
In the picture it is G point again

Q 1 1 Since d = −1 and x1[d] = 0, y1[d] = 0
Decoded co-ordinates: 1 1

This is in 1st region. Answer is 1 and so d = 1.
In the picture it is H point again

R 0 5 4 4 5 0 Since d = 1 and x1[d] = 0, y1[d] = 0
Decoded co-ordinates: 0 5 4 4 5 0

In the picture it is BLC triangle
Q 3 3 Since d = 1 and x1[d] = 0, y1[d] = 0

Decoded co-ordinates: 3 3

This is in 4th region. Answer is 4 and so d = 4.
In the picture it is M point

The following picture should give you an idea of how one of the judge test case look like:

Sample Input

1

10

R 0 0 0 5 5 0

R 10 10 10 5 5 10

Q 5 5

Q 1 1

Q 9 9

R -6 -4 -4 -6 -6 -6

Q -5 -5

Q 1 1

R 0 5 4 4 5 0

Q 3 3

Sample Output

Case 1:

0

1

2

-1

1

4


