You must have heard the 'Traveling Salesman Problem'. Here we are talking about another problem named 'Traveling Fool Problem'. Assume that there are n cities connected by m one way roads. Each road is labeled by an uppercase English letter (i.e 'A' to ' Z '). There can be multiple roads between two cities but no roads will start and end at the same city.

The traveling fool starts his journey from city s and he continues his journey until he reaches t, or he reaches a city from which t is unreachable. If he is in city u, he can choose any road that starts from u with equal probability.

He may visit same city/road more than once, but once he reaches t, he immediately stops his journey and remembers the road-labels he found in his path in the same order the roads were visited. If the road-labels in the path he traveled form a palindrome, he finds himself lucky. If he is unable to reach t or the road-labels don't form a valid palindrome, he finds himself unlucky.

Given the cities, roads, s and t, can you find the probability of Mr Traveling Fool being lucky?

Input

Input starts with an integer $T(\leq 100)$, denoting the number of test cases.
Each case starts with a blank line. Next line contains two integers $n(2 \leq n \leq 12)$ and $m(0 \leq m \leq$ 1000). Each of the next m lines contains two integers, $u v(0 \leq u, v<n, u \neq v)$ and an uppercase English letter w, meaning that there is a one-way road from city u to city v and the road label is w. Next line contains an integer $(1 \leq q \leq 150)$ denoting the number of queries. Each of the next q lines contains two integers denoting $s t(0 \leq s, t<n, s \neq t)$.

Output

For each case, print the case number first. Then for each query, print the probability as stated. Errors less than 10^{-4} will be ignored.

Sample Input

2

```
4
0 1 A
1 2 A
2 3 A
2
0}
2 0
54
12 B
2 3 D
24 A
2 O B
2
1 3
1 0
```


Sample Output

Case 1:
1.000000
0.000000

Case 2:
0.000000
0.333333

