using the acronym SSD for convenience from now on).

Figure 1: Segments used for SSD representation
Here, DP represents decimal place which is not necessary in the context of this problem.
And here are the numbers from 0 to 9 represented in SSD.

0 7 2 3 4 5 6 789

0 uses segments A, B, C, D, E, F 1: B, C
2: A, B, G, E, D
3: A, B, C, D, G
4. B, C, F, G

5: A, C, D, F, G
6: A, C, D, E, F, G
6: A, C, D,
8: A, B, C, D, E, F, G
9: A, B, C, D, F, G
Now, imagine the SSD representation of a digit as a graph. The endpoints of the segments are the nodes and segments are edges. So, the digits will look like

We call this representation a 0 -degree SSD graph. A k-degree $(k>0)$ SSD graph is made by ividing each edge of a 0 -degree graph into $k+1$ edges and introducing k nodes in between them. To explain more, 1-degree graphs of all digits are shown below. The darker nodes are the newly introduced nodes.

You'll be given a graph with n nodes and m edges. You'll need to print all the (degree, digit) pairs which the given graph is valid.

Input

The first line of the input contains an integer which denotes the number of test cases $T(1 \leq T \leq 20)$ T sets of case will follow. Each case will start with a couple of numbers $n(1 \leq n \leq 500)$ and m ($1 \leq m \leq 1000$) - the number of nodes and the number of edges respectively. Each of the next m re numbered from 1 to n. It's guaranteed that there is no duplicate or self-edges in the input.

Output

For each set of inputs, output one set of output. First line of a set should be of the format, 'Case X Y^{\prime} (here, X is the serial of the input and Y is the number of (digit, degree) pairs) in a line. Then frint then (digree Each) pair - one pair Y each lie. The pairs shoud be sorted according to digit frst then degree. Each number in a pair should be separated with a space. Print a blank line between

Sample Input

12
23
3 34
45 5
6
7 89
9 910
1011 $\begin{array}{ll}1011 \\ 11 & 12\end{array}$ $\begin{array}{lll}11 & 12 \\ 12 & 13 \\ 13 & 14\end{array}$ $\begin{array}{ll}1213 \\ 13 & 14 \\ 14 & 15\end{array}$ 1415 43 12
13

Sample Output

