The topographic prominence of a peak is a measure of special interest to mountain climbers and can be defined as follows: the prominence of a peak p with altitude h, relative to the sea level, is the greatest d such that any path on the terrain from p to any strictly higher peak will pass through a point of altitude $h-d$. If there is no strictly higher peak, then the prominence is h itself. Those peaks with topographic prominence greater than or equal to 150000 centimeters (precision is of great importance to climbers!) have a special name: they are called "Ultras".

You have to write a program that identifies all the Ultras that occur in a two dimensional profile of a mountain range represented as a sequence of points. Note that the horizontal distance between points is not important; all that you need is the altitude of each point. In the picture below, the Ultras are the points $7,12,14,20$ and 23 .

Input

The input file contains several test cases, each of them as described below.
The first line contains an integer $N\left(3 \leq N \leq 10^{5}\right)$ representing the number of points in the profile. The second line contains N integers H_{i} indicating the altitudes (in centimeters) of the points, in the order in which they appear in the profile $\left(0 \leq H_{i} \leq 10^{6}\right.$ for $\left.i=1,2, \ldots, N\right)$. Consecutive points have different altitudes $\left(H_{i} \neq H_{i+1}\right.$ for $\left.i=1,2, \ldots, N-1\right)$, while the first and the last points are at sea level ($H_{1}=H_{N}=0$). You may assume that the profile contains at least one Ultra.

Output

For each test case, output a line with the indices of all the Ultras in the mountain range, in the order in which they appear in the profile.

Sample Input

5

0100001000008848130
7
010000002000001800002000000

Sample Output

4
46

