In this problem, we refer to the digits of a positive integer as the sequence of digits required to write it in base 10 without leading zeros. For instance, the digits of $N=2090$ are of course 2, 0,9 and 0 .

Let N be a positive integer. We call a positive integer M an eleven-multiple-anagram of N if and only if (1) the digits of M are a permutation of the digits of N, and (2) M is a multiple of 11 . You are required to write a program that given N, calculates the number of its eleven-multiple-anagrams.

As an example, consider again $N=2090$. The values that meet the first condition above are 2009, 2090, 2900, 9002, 9020 and 9200 . Among those, only 2090 and 9020 satisfy the second condition, so the answer for $N=2090$ is 2 .

Input

The input file contains several test cases, each of them as described below.
A single line that contains an integer $N\left(1 \leq N \leq 10^{100}\right)$.

Output

For each test case, output a line with an integer representing the number of eleven-multiple-anagrams of N. Because this number can be very large, you are required to output the remainder of dividing it by $10^{9}+7$.

Sample Input

2090
16510
201400000000000000000000000000

Sample Output

