Fermat's Last Theorem: no three positive integers a, b, and c can satisfy the equation $a^{n}+b^{n}=c^{n}$ for any integer value of n greater than two.

From the theorem, we know that $a^{3}+b^{3}=c^{3}$ has no positive integer solution.
However, we can make a joke: find solutions of $a^{3}+b^{3}=c^{3}$. For example $4^{3}+9^{3}=793$, so $a=4$, $b=9, c=79$ is a solution.

Given two integers x and y, find the number of solutions where $x \leq a, b, c \leq y$.

Input

There will be at most 10 test cases. Each test case contains a single line: $x, y\left(1 \leq x \leq y \leq 10^{8}\right)$.

Output

For each test case, print the number of solutions.

Sample Input

110
120
123456789

Sample Output

Case 1: 0
Case 2: 2
Case 3: 16

