You have n boxes in a line on the table numbered $1 \ldots n$ from left to right. Your task is to simulate 4 kinds of commands:

- $1 \times Y$: move box X to the left to Y (ignore this if X is already the left of Y)
- $2 \times Y$: move box X to the right to Y (ignore this if X is already the right of Y)
- 3 X Y : swap box X and Y
- 4: reverse the whole line.

Commands are guaranteed to be valid, i.e. X will be not equal to Y.
For example, if $n=6$, after executing 114 , the line becomes 231456 . Then after executing 235 , the line becomes 214536 . Then after executing 316 , the line becomes 264531 . Then after executing 4, then line becomes 135462

Input

There will be at most 10 test cases. Each test case begins with a line containing 2 integers n, m ($1 \leq n, m \leq 100,000$). Each of the following m lines contain a command.

Output

For each test case, print the sum of numbers at odd-indexed positions. Positions are numbered 1 to n from left to right.

Sample Input

64

114
235
316
4
63
114
235
316
1000001
4

Sample Output

Case 1: 12
Case 2: 9
Case 3: 2500050000

