You will be given N points on a circle. You must write a program to determine how many distinct equilateral triangles can be constructed using the given points as vertices.

The figure below illustrates an example: (a) shows a set of points, determined by the lengths of the circular arcs that have adjacent points as extremes; and (b) shows the two triangles which can be built with these points.

(a)

(b)

Input

The input contains several test cases. The first line of a test case contains an integer N, the number of points given. The second line contains N integers X_{i}, representing the lengths of the circular arcs between two consecutive points in the circle: for $1 \leq i \leq(N-1), X_{i}$ represents the length of the arc between between points i and $i+1 ; X_{N}$ represents the length of the arc between points N and 1 .

Output

For each test case your program must output a single line, containing a single integer, the number of distinct equilateral triangles that can be constructed using the given points as vertices.

Restrictions

- $3 \leq N \leq 10^{5}$
- $1 \leq X i \leq 10^{3}$, for $1 \leq i \leq N$

Sample Input

8

42422622
6
342153

Sample Output

2

