Once Gödel dreamt about codes. And he foresaw a very interesting puzzle involving finite sequences of bits called $h$-sequences. An $h$-sequence is a string defined recursively as follows:

$$
\begin{aligned}
& \langle h s e q\rangle::=0 \\
& \langle h s e q\rangle::=1\langle h s e q\rangle\langle h s e q\rangle
\end{aligned}
$$

For instance, 0,11000 , and 101100100 are $h$-sequences but 1,11001 , and 111100100 are not.
Gödel's dream was of a tall order of $h$-sequence fun because the strings had incomplete information. More precisely, strings did not only contain bits ' 0 ' and ' 1 ', but they also contained the question mark symbol '?'. The occurrence of a question mark symbol in a string indicates that any bit can go in such a position of the string. For example, the sequence $101 ? 0$ can actually have the $h$-sequence 10100 and the string 10110 (which is not an $h$-sequence) as instances.

Given a string made of bits, possibly containing question mark symbols, your task is to write a program that computes the maximum number of $h$-sequences that concatenated together result in an instance of such a string.

## Input

The input consists of several test cases, each one defined by a line containing a string $s$ made of characters ' 0 ', ' 1 ', and '?', whose length is between 1 and $10^{4}$ inclusive.

## Output

For each test case, output a line with the maximum number of $h$-sequences that concatenated together result in an instance of $s$.

## Sample Input

0
10100
??1?
?1??
1?010100
???1????

## Sample Output

