Given a string S and an integer K, another string T is obtained by concatenating S, K times. How many distinct substrings are there in the string T ?

For example, when $S=$ "ab", $K=2: T=$ "abab" and there are $\mathbf{7}$ distinct substrings in the string T and they are: "a", "b", "ab", "ba", "aba","bab" and "abab".

Input

First line of input contains an integer $T(<101)$ which is the number of test cases. Each of the following T lines contain a string S and an integer $K\left(2 \leq K \leq 10^{9}\right)$. The length of S is at most 50000 and it consists of lowercase letters only and the string is non-empty.

Output

For each test case, output the case number followed by the number of distinct substrings. The input will be such that the result will always fit into a 64 -bit signed integer number.

Sample Input

3

ab 3
abc 5
aba 4

Sample Output

Case 1: 11
Case 2: 42
Case 3: 32

