
NURBS Curves are lovely and magical, because you can make a lot of interesting shapes from it:

Given two NURBS curves, your task is the find all their intersection points.

If you’re not familiar with NURBS curves, here we go:
NURBS is a parametric curve which takes the following form:

C(u) =

n∑
i=1

wiNi,k(u)Pi

n∑
i=1

wiNi,k(u)

Where u is the parameter, n is the number of control points, k is the degree of the curve, Pi and
wi are the location and weight of the i-th control point.

The basis function Ni,k is defined recursively below:

Ni,k(u) =
u− ti

ti+k − ti
Ni,k−1(u) +

ti+k+1 − u

ti+k+1 − ti+1
Ni+1,k−1(u)

Ni,0(u) =
{
1 if ti ≤ u < ti+1

0 else
Where ti is the i-th knot value. In the formula above, 0/0 is deemed to zero.

To understand the formulae above, here are some brief explanations of the parameters:

Degree. The degree is a positive integer. NURBS lines and polylines are usually degree 1 (linear
curve), NURBS circles are degree 2 (quadratic curve), and most free-form curves are degree 3 or 5.

Control Points. The control points are a list of at least degree+1 points. One of easiest ways to change
the shape of a NURBS curve is to move its control points (You can try it out: http://geometrie.foretnik.net/files/NURBS-en.swf).

Each control point has an associated number called weight. In this problem, weights are positive
numbers. If you increase the weight of a control point, the curve is pulled toward that control point
and away from other control points.

Knots. The knot vector is defined as U = [t1, t2, . . . , tm]. The relation between the number of knots m,
the degree k, and the number of control points n is given by m = n+k+1 (In OpenNURBS/Rhinoceros
website, m = n + k − 1. The algorithm presented here is referred as “some older algorithms”. When
solving this problem, please stick to this problem description).

The sequence of knots in the knot vector U is assumed to be non-decreasing, i.e. ti ≤ ti+1. Each
successive pair of knots represents an interval [ti, ti+1) for the parameter values to calculate a segment
of a shape. Thus, the whole NURBS curve is defined within [t1, tm). The number of times
a knot value is duplicated is called the knot’s multiplicity, which should be no more than the degree.
Duplicate knot values in the middle of the knot list make a NURBS curve less smooth.

If you’re still puzzled after reading all the information above, suppose we’re moving u from t1
towards tm (but never reach tm), then the point C(u) will move long the NURBS curve we define.

Input
The first line contains the number of test cases T (T ≤ 25). Each test case contains two parts, one
for each NURBS curve. Each curve begins with two integers n and m (2 ≤ n ≤ 20), the number of
control points and the number of knots. Each of the next n lines contains three real numbers x, y, w
(0 ≤ x, y ≤ 10, 0 < w ≤ 10), describing a control point (x, y) with weight w. The next line contains m
real numbers, describing the knot vector. The first knot value is always 0 and the last one is always 1.
The degree of both NURBS curves will be 1, 2, 3 or 5.

Output
For each test case, print the number of intersection points in the first line, then each point is printed
in a following line. The coordinates should be rounded to three decimal places, and points should
be sorted lexicographically (i.e. points with smaller x-coordinate comes earlier). Inputs are carefully
designed so that the minimal difference of x-coordinate between any two intersection points will be at
least 0.005 (otherwise the sorting result might be affected by numerical stability).

Print a blank line after each test case.

Note: The pictures of the samples are shown below:

Sample Input
2
8 12
2 0 1
0 1 1
1 3 2
1.5 2 1
2.5 2 1
3 3 2
4 1 1
2 0 1
0 0 0 0 0.2 0.4 0.6 0.8 1 1 1 1
2 4
0 0 1
4 3 1
0 0 1 1
7 10
1 1.732 1
0 0 0.5
2 0 1
4 0 0.5
3 1.732 1
2 3.464 0.5
1 1.732 1
0 0 0 0.333 0.333 0.667 0.667 1 1 1
7 10
0 1.732 1
2 0 0.5
3 0 1
6 0 0.5
2 1.732 1
6 3.464 0.5
0 1.732 1
0 0 0 0.333 0.333 0.667 0.667 1 1 1

Sample Output
Case 1: 2
(1.029, 0.772)
(3.221, 2.416)

Case 2: 6
(0.847, 1.092)
(1.307, 2.078)
(2.283, 2.274)
(2.538, 0.133)
(2.693, 2.078)
(3.153, 1.092)


