NURBS Curves are lovely and magical, because you can make a lot of interesting shapes from it:

Given two NURBS curves, your task is the find all their intersection points.
If you're not familiar with NURBS curves, here we go
NURBS is a parametric curve which takes the following form:

$$
C(u)=\frac{\sum_{i=1}^{n} w_{i} N_{i, k}(u) P_{i}}{\sum_{i=1}^{n} w_{i} N_{i, k}(u)}
$$

Where u is the parameter, n is the number of control points, k is the degree of the curve, P_{i} and有 the location and weight of the i-th control point.
The basis function $N_{i, k}$ is defined recursively below:

$$
N_{i, k}(u)=\frac{u-t_{i}}{t_{i+k}-t_{i}} N_{i, k-1}(u)+\frac{t_{i+k+1}-u}{t_{i+k+1}-t_{i+1}} N_{i+1, k-1}(u)
$$

$$
N_{i, 0}(u)= \begin{cases}1 & \text { if } \\ 0 & \text { else }\end{cases}
$$

Where t_{i} is the i-th knot value. In the formula above, $\mathbf{0} / \mathbf{0}$ is deemed to zero.

To understand the formulae above, here are some brief explanations of the parameters
Degree. The degree is a positive integer. NURBS lines and polylines are usually degree 1 (linear urve), NURBS circles are degree 2 (quadratic curve), and most free-form curves are degree 3 or 5 . Control Points. The control points are a list of at least degree +1 points. One of easiest ways to change he shape of a NURBS curve is to move its control points (You can try it out: http://geometrie.foretni Each control point has an associated number called weight. In this problem, weights are positive numbers. If you increase the weight of a control point, the curve is pulled toward that control point and away from other control points.

Knots. The knot vector is defined as $U=\left[t_{1}, t_{2}, \ldots, t_{m}\right]$. The relation between the number of knots m, the degree k, and the number of control points n is given by $m=n+k+1$ (In OpenNURBS/Rhinocero website, $m=n+k-1$. The algorithm presented here is referred as "some older algorithms". When The sequence of knots in the to this problem description)
 of a shape. Thus, the whole NURBS curve is defined within $\left[t_{1}, t_{m}\right)$. The number of times a knot value is duplicated is called the knot's multiplicity, which should be no more than the degree Duplicate knot values in the middle of the knot list make a NURBS curve less smooth

If you're still puzzled after reading all the information above, suppose we're moving u from t_{1} towards t_{m} (but never reach t_{m}), then the point $C(u)$ will move long the NURBS curve we define.

Input

The first line contains the number of test cases $T(T \leq 25)$. Each test case contains two parts, one for each NURBS curve. Each curve begins with two integers n and $m(2 \leq n \leq 20)$, the number $0 \leq x, y<10,0<w \leq 10)$, describing a control point (x, y) with weight w. The next line contains real numbers, describing the knot vector. The first knot value is always 0 and the last one is always 1 . The degree of both NURBS curves will be $1,2,3$ or 5 .

Output

For each test case, print the number of intersection points in the first line, then each point is printed in a following line. The coordinates should be rounded to three decimal places, and points should be sorted lexicographically (i.e. points with smaller x-coordinate comes earlier). Inputs are carefull
designed so that the minimal difference of x-coordinate between any two intersection points will be at least 0.005 (otherwise the sorting result might be affected by numerical stability).
Print a blank line after each test case
Note: The pictures of the samples are shown below

Sample Input

2
8
2
2
$\begin{array}{lll}2 & 0 & 1 \\ 0 & 1 & 1\end{array}$
$\begin{array}{lll}11 \\ 3 & 2\end{array}$
$\begin{array}{lll}1 & 1 & 3 \\ 1.5 & 1 \\ 2.5 & 2 & 1\end{array}$
$\begin{array}{lll}2.5 & 1 \\ 3 & 3 & 2 \\ 4 & 1 & 1\end{array}$
$\begin{array}{lll}4 & 1 & 1 \\ 2 & 0 & 1\end{array}$

24	
0	4

431
001
71.7321
$\begin{array}{llll}0 & 0 & 0.5 \\ 2 & 0 & 1\end{array}$
$\begin{array}{ll}2 & 0 \\ 4 & 0 \\ 4 & 0.5\end{array}$
31.7321
23.4640 .5
11.7321
$\begin{array}{lllll}0 & 0 & 0 & 0.333 & 0.333 \\ 7 & 0.667 & 0.667 & 11\end{array}$
. 1.73
$\begin{array}{llll}0 & 1.7321 \\ 2 & 0 & 0.5\end{array}$
200.5
600.5
$\begin{array}{ll}21.7321 \\ 6 & 3.4640 .5\end{array}$
01.7321
0000.3330 .3330 .6670 .667111

Sample Output

Case 1: 2
$1.029,0.772)$
$3.221,2.416)$

Case 2: 6
(0.847, 1.092)
(1.307, 2.078)
(2.283, 2.274)
$(2.538,0.133)$
$(2.693,2.078)$
$(2.693,2.078)$
$(3.153,1.092)$

