When I was a high school student, I learned that given a triangle ABC, denote D, E, F as the midpoints of AB, BC and CA , then three segments $\mathrm{CD}, \mathrm{AE}, \mathrm{BF}$ intersects at one point: the centroid.

Then I thought about the following question: if we change "midpoint" by "perimeter midpoint", can $\mathrm{CD}, \mathrm{AE}, \mathrm{BF}$ still intersect at one point?

To be precise, if $\mathrm{CA}+\mathrm{AD}=\mathrm{DB}+\mathrm{BC}$, we say D is the "perimeter midpoint" on AB .

It's not difficult to see that there is exactly one such point lying strictly inside the segment AB . Point E and F are defined similarly and also have unique positions.

Help (the younger) me to find out the answer!

Input

The first line contains the number of test cases $T(T \leq 100)$. Each test case contains 6 integers x_{1}, y_{1}, $x_{2}, y_{2}, x_{3}, y_{3}$, whose absolute values do not exceed 100. These integers represent three non-collinear points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$.

Output

For each test case, if $\mathrm{CD}, \mathrm{AE}, \mathrm{BF}$ intersect at one point, print the position of the intersection to 6 decimal places. Otherwise print 'ERROR' (without quotes).

Sample Input

2

-10010001
005033

Sample Output

Case 1: 0.0000000 .171573
Case 2: 2.3629110 .665041

