You are given a matrix of size $r \times c$. Each of the elements can be either 0 or 1 . In each operation you can flip any element of this matrix, i.e. convert 0 to 1 or convert 1 to 0 . Your goal is to convert the matrix such that

1. Each of the rows will have the same number of 1 s and
2. Each of the columns will have the same number of 1 s .

What is the minimum number of operations required to achieve this?

Input

Input starts with a positive integer $T(\sim 1000)$ which indicates the number of inputs. Each case starts with two integers m and $n(1 \leq r, c \leq 40)$, here r is the number of rows and c is the number of columns of the matrix. Each of the next m lines will have n integers each, either 0 or 1 .

Output

For each test case, output 'Case \#: $\quad R$ ' in a single line, where \# will be replaced by case number and R will be replaced by the minimum number of steps required to achieve the target matrix. Replace R by ' -1 ' if it is not possible to reach target matrix.

Sample Input

3
23
111
111
33
011
011
011
23
001
000

Sample Output

Case 1: 0
Case 2: 3
Case 3: 1

