There are n kinds (i.e. type-1, type- $2, \ldots$, type- n) of m satellites in the space. For each $1 \leq i \leq n$, all the type- i satellites are working together to protect their minimal enclosing convex polyhedron (though its volume might be zero). If a point is protected by at least k kinds of satellites, we say this point is safe.

Find the volume of all safe places (it might be zero).

Input

The first line contains $T(T \leq 25)$, the number of test cases. Each test case begins with three integers n, k and $m(1 \leq k \leq n \leq 5,4 \leq m \leq 50)$. Each of the following m lines contains an integer t and three real numbers x, y, z, representing a type- t satellite at $(x, y, z)(1 \leq t \leq n, 0 \leq x, y, z \leq 10)$. Each test case is terminated by a blank line

Note: The coordinates of satellites in the judge input (not sample input) are randomly generated.

Output

For each test case, print the volume rounded to 5 decimal places after the decimal point.

Sample Input

2
2116
1000
1002
1020
1022
1200
1202
1220
1222
2111
2113
2131
2133
2311
2313
2331
2333

114
1000
1010
1001
1100

Sample Output

15.00000
0.16667

