In how many ways you can select K objects from N different circularly placed objects such that the selection does not contain any pair of distinct objects having distance less than D around the circle? Here distance is the minimum of clockwise and anticlockwise distance. Details in following figure:

Here, 5 objects $\{A, B, C, D, E\}$ are placed circularly. Say, K = 2 and D = 2, then the 5 possible selections are $\{A, C\}$, $\{A, D\}$, $\{B, D\}$, $\{B, E\}$, $\{C, E\}$. A selection is considered to be different from the others if it contains at least 1 object which is not present in the other selection.

Input

First line of the input contains a positive integer T ($T \le 5000$). Each of the following T lines contains three positive integers N ($1 \le N \le 1000$), K ($1 \le K \le N$) and D ($1 \le D \le 10$), respectively.

Output

For each case, print a line of the form 'Case $\langle x \rangle$: $\langle y \rangle$ ', where x is the case number and y is the number of ways $modulo\ 10000000007\ (10^9 + 7)$.

Sample Input

5 2 2

5 2 1

3 2 2

10 3 2

Sample Output

Case 1: 5

Case 2: 10

Case 3: 0

Case 4: 50