In how many ways you can select K objects from N different circularly placed objects such that the selection does not contain any pair of distinct objects having distance less than D around the circle? Here distance is the minimum of clockwise and anticlockwise distance. Details in following figure:

E
B

D

C

Here, 5 objects $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$ are placed circularly. Say, $K=2$ and $D=2$, then the 5 possible selections are $\{A, C\},\{A, D\},\{B, D\},\{B, E\},\{C, E\}$. A selection is considered to be different from the others if it contains at least 1 object which is not present in the other selection.

Input

First line of the input contains a positive integer $T(T \leq 5000)$. Each of the following T lines contains three positive integers $N(1 \leq N \leq 1000), K(1 \leq K \leq N)$ and $D(1 \leq D \leq 10)$, respectively.

Output

For each case, print a line of the form 'Case $\langle x\rangle$: $\langle y\rangle$ ', where x is the case number and y is the number of ways modulo $1000000007\left(10^{9}+7\right)$.

Sample Input

4

522
521
322
1032

Sample Output

Case 1: 5
Case 2: 10
Case 3: 0
Case 4: 50

