Given a positive integer n, denote by $[n]$ the interval $\{x: 0 \leq x \leq n\}$ of real numbers. Consider a function $f:[n] \Rightarrow R$. Values of f are provided on a subset S of $[n]$, thereby partially specifying f.

The set S satisfies the following properties:

1. The points in S are all integers.
2. The extremes 0 and n of $[n]$ are both in S.

The function f satisfies the following properties:

- The values of f in the integral points of $[n]$ are integers.
- Between two consecutive points of S, the function is monotonic.
- For each non-integral point x in $[n]$, the value of $f(x)$ is given by the linear interpolation of $f(\lfloor x\rfloor)$ and $f(\lceil x\rceil)$, ie, $f(x)=(x-\lfloor x\rfloor) f(\lfloor x\rfloor)+(\lceil x\rceil-x) f(\lceil x\rceil)$.

We still have the freedom of specifying the values of f in the integral points of $[n] \backslash S$ (note however that S can contain all the integral points of $[n]$). We would like to use this flexibility to make $\int_{0}^{n} f(x) d x=y$, i.e., the area under $f(x)$ between the extremes 0 and n equal to y, a given value.

Your problem then is to decide whether this is possible or not.

Input

The input contains several test cases. The first line of a test case contains three integers, N, M and Y, respectively the amplitude of the interval, the size of S and the value of y. Each of the following M lines describes function f at a point of S, containing two integers X and F, representing $f(X)=F$. The values of X are not necessarily in ascending order.

Output

For each test case, determine whether there is a value assignment to $f(x)$ for each integral point $x \in[n] \backslash S$ such that $\int_{0}^{n} f(x) d x=y$, i.e. the area under $f(x)$ between the ends 0 and n is equal to y. If not, your program should print a line containing only the character ' N '. If the assignments are possible, your program should print a line containing the character ' S ', followed by values of $f(x)$ for the integral points $x \in[n] \backslash S$, in increasing order of the values of x. The initial character and following values, if any, should be separated by a blank space. If more than one solution is possible, then print the lexicographically smallest solution.

Restrictions

- $1 \leq N \leq 10^{6}$
- $0 \leq X \leq N, X$ integer, $\forall X \in S$
- $0 \leq F \leq 10^{6}, F$ integer
- $0 \leq Y \leq 10^{9}, Y$ integer
- $\int_{0}^{n} f(x) d x \leq 10^{9}$ for any assignment of values to $f(x)$ for $x \in[n] \backslash S$ satisfying the stated constraints.

Sample Input

610
02
12
52
22
32
42
5210
00
510
25
01
22
10318
02
64
100
221
00
21

Sample Output

S
S 0005
N

