Given an $N \times M$ rectangle of integers, find the area of the largest sub-rectangle such that, each cell of the sub-rectangle, $R_{i,j}$, is K-neutral cell. A cell, $R_{i,j}$, is K-neutral, if absolute difference between the values of $R_{i,j}$ and each of its neighbors in horizontal and vertical direction is not more than K. The cells $R_{i-1,j}$, $R_{i+1,j}$, $R_{i,j-1}$ and $R_{i,j+1}$ are the four neighbors of the cell $R_{i,j}$. The neighborhoods should be considered only in the new sub-rectangle, not in the original rectangle. For example,

9	30	20	25	10
10	1	3	3	9
0	2	3	4	7
1	7	11	10	8

For N=4, M=5 and K=1 in the above rectangle, the largest K-neutral sub-rectangle is

1	3	3
2	3	4

Input

Input starts with an integer $T (\leq 100)$, denoting the number of test cases. Each test case starts with three integers N, M and K ($1 \leq N$, $M \leq 1000$, $0 \leq K \leq 100000$). Each of the next N line will contain M integers $R_{i,j}$ ($0 \leq R_{i,j} \leq 10000000$).

Output

For each case print the case number and the area of the largest K-neutral sub-rectangle.

Sample Input

2

4 5 1

9 30 20 25 10

10 1 2 3 9

0 2 3 4 7

1 7 11 10 8

2 2 1

3
4
6

Sample Output

Case 1: 6

Case 2: 1