Dexter considers a permutation of first N positive numbers $(1,2, \ldots, N)$ beautiful if all the absolute differences between adjacent numbers in the permutation are distinct.

So for $N=4:\{3,2,4,1\}$ is a beautiful permutation because the absolute differences are $\{1,2$, $3\}$. But $\{3,1,4,2\}$ is not beautiful since the absolute differences $\{2,3,2\}$ are not distinct.

Given N and K find the lexicographically K-th smallest beautiful permutation of the first N positive numbers. A permutation of N numbers $A_{1}, A_{2}, \ldots, A_{n}$ is lexicographically smaller than another permutation $B_{1}, B_{2}, \ldots, B_{n}$ if $A_{i}<B_{i}$ for some i and $A_{j}=B_{j}$ for all $j<i$.

Input

First line of the input contains an integer $T(\leq 1000)$ which is the number of test cases. Each of the next T lines contain two space separated integers $N(1<N<20)$ and $K\left(1 \leq K \leq 10^{9}\right)$.

Output

For each test case output the case number and then N space separated integers which is the lexicographically K-th smallest beautiful permutation of first N positive numbers. If there are less than K beautiful permutations then output ' -1 '. See sample output for exact formatting.

Sample Input

4
51
52
54
510

Sample Output

```
Case 1: 1 5 2 4 3
Case 2: 2 3 5 14
Case 3: 3 2 4 1 5
Case 4: -1
```

