Dexter considers a permutation of first N positive numbers (1, 2, ..., N) beautiful if all the absolute differences between adjacent numbers in the permutation are distinct.

So for N=4: $\{3, 2, 4, 1\}$ is a **beautiful** permutation because the absolute differences are $\{1, 2, 3\}$. But $\{3, 1, 4, 2\}$ is not **beautiful** since the absolute differences $\{2, 3, 2\}$ are not distinct.

Given N and K find the lexicographically K-th smallest beautiful permutation of the first N positive numbers. A permutation of N numbers A_1, A_2, \ldots, A_n is lexicographically smaller than another permutation B_1, B_2, \ldots, B_n if $A_i < B_i$ for some i and $A_j = B_j$ for all j < i.

Input

First line of the input contains an integer $T \leq 1000$ which is the number of test cases. Each of the next T lines contain two space separated integers $N \leq N \leq 100$ and $N \leq N \leq 100$.

Output

For each test case output the case number and then N space separated integers which is the lexicographically K-th smallest beautiful permutation of first N positive numbers. If there are less than K beautiful permutations then output '-1'. See sample output for exact formatting.

Sample Input

4

5152

5 4

5 10

Sample Output

Case 1: 1 5 2 4 3 Case 2: 2 3 5 1 4

Case 3: 3 2 4 1 5

Case 4: -1