Professors are very motivated when they have to travel abroad for a conference (of course, if fees are paid by the university), but they don't have the same attitude when the moment to grade exams arrives.

Professor Lazy, Ph.D., has a particular way to grade exams (and very unfair, by the way). He puts all his exams in a box and then starts getting them out one by one in a totally random fashion. He assigns grade α to the first exam that he gets out of the box, and grade β to the second exam that he gets out of the box. From that point on, he assigns a grade to each of the exams based on the grades of the previous two exams. What he does is that he takes the grade of the immediately previous exam, adds 1 and divides by the grade of the exam before the previous one.

For example, let's imagine that $\alpha=2$ and $\beta=3$. This is what happens:

- The first exam gets $\alpha=2$.
- The second exam gets $\beta=3$.
- The previous two grades are α and β, so the third exam gets $\frac{(1+\beta)}{\alpha}=\frac{(1+3)}{2}=2$.
- The previous two grades are β and $\frac{(1+\beta)}{\alpha}$, so the fourth exam gets $\frac{1+\frac{(1+\beta)}{\alpha}}{\beta}=\frac{1+2}{3}=2$.
- The procedure continues until he's done with all exams.

More formally, we can define the grade Q_{n} of the n-th exam with a recurrence like this:

$$
Q_{n}=\left\{\begin{array}{lll}
\alpha & \text { if } & n=0 \\
\beta & \text { if } & n=1 \\
\frac{1+Q_{n-1}}{Q_{n-2}} & \text { if } & n \geq 2
\end{array}\right.
$$

Even this simple procedure is a lot of work for Professor Lazy, Ph.D., so he asks you to write a program to do it for him. He wants to spend all day long drinking coffee in the cafeteria with other professors. Given α, β and n find the value of Q_{n}.

Note that the grades do not necessarily lie inside a fixed range. They are just arbitrary integers.

Input

The input contains several test cases (at most 1000). Each test case is described by three integer numbers α, β and n on a single line $\left(1 \leq \alpha, \beta \leq 10^{9}\right.$ and $\left.0 \leq n \leq 10^{15}\right)$.

The last line of the input contains three zeros and should not be processed.

Output

For each test case, write the value of Q_{n} in a single line. The input will be such that the value of Q_{n} is always an integer. Furthermore, Q_{i} will never be zero for $0 \leq i \leq n$ (in other words, division by zero will never arise when evaluating the recurrence).

Sample Input

110
121
592
233
744
2109650790344341899059516
4586168657594261603792314
230973421045930808597262407955
000

Sample Output

1

2
2
1
2
650790
804591
2309734

