Professors are very motivated when they have to travel abroad for a conference (of course, if fees are paid by the university), but they don't have the same attitude when the moment to grade exams arrives.

Professor Lazy, Ph.D., has a particular way to grade exams (and very unfair, by the way). He puts all his exams in a box and then starts getting them out one by one in a totally random fashion. He assigns grade α to the first exam that he gets out of the box, and grade β to the second exam that he gets out of the box. From that point on, he assigns a grade to each of the exams based on the grades of the previous two exams. What he does is that he takes the grade of the immediately previous exam, adds 1 and divides by the grade of the exam before the previous one.

For example, let's imagine that $\alpha = 2$ and $\beta = 3$. This is what happens:

- The first exam gets $\alpha = 2$.
- The second exam gets $\beta = 3$.
- The previous two grades are α and β , so the third exam gets $\frac{(1+\beta)}{\alpha} = \frac{(1+3)}{2} = 2$.
- The previous two grades are β and $\frac{(1+\beta)}{\alpha}$, so the fourth exam gets $\frac{1+\frac{(1+\beta)}{\alpha}}{\beta} = \frac{1+2}{3} = 2$.
- The procedure continues until he's done with all exams.

More formally, we can define the grade Q_n of the *n*-th exam with a recurrence like this:

$$Q_n = \begin{cases} \alpha & \text{if} \quad n = 0\\ \beta & \text{if} \quad n = 1\\ \frac{1+Q_{n-1}}{Q_{n-2}} & \text{if} \quad n \ge 2 \end{cases}$$

Even this simple procedure is a lot of work for Professor Lazy, Ph.D., so he asks you to write a program to do it for him. He wants to spend all day long drinking coffee in the cafeteria with other professors. Given α , β and n find the value of Q_n .

Note that the grades do not necessarily lie inside a fixed range. They are just arbitrary integers.

Input

The input contains several test cases (at most 1000). Each test case is described by three integer numbers α , β and n on a single line ($1 \le \alpha, \beta \le 10^9$ and $0 \le n \le 10^{15}$).

The last line of the input contains three zeros and should not be processed.

Output

For each test case, write the value of Q_n in a single line. The input will be such that the value of Q_n is always an integer. Furthermore, Q_i will never be zero for $0 \le i \le n$ (in other words, division by zero will never arise when evaluating the recurrence).

Sample Input

1 1 0 1 2 1 5 9 2 2 3 3 7 4 4 2109 650790 344341899059516 45861686 57 594261603792314 2309734 21045930 808597262407955 0 0 0

Sample Output