Let A and B be non-negative integers and let C = A & B and D = A | B. Given C and D, can you find A and B such that the absolute difference (|A - B|) is minimal? $(A \& B \ and \ A | B \ are \ bitwise \ AND \ and \ OR \ respectively).$

Input

The input starts with an integer T — the number of test cases ($T \leq 100$). T cases follow on each subsequent line, each of them containing integers C and D ($0 \leq C, D < 2^{31}$).

Output

For each test case, print integers A and B on a line such that A&B = C, A|B = D, $A \le B$ and B - A is minimal. If there are no such A and B, print '-1' on the line instead.

Sample Input

3

2 3

3 2

3 15

Sample Output

2 3

-1

7 11