
In this problem-series, you’re to implement a subset of the Lua language (version 5.1), called mini-lua
(mua). This is one of Rujia Liu’s experimental languages, mainly for implementing algorithms, not
real-world programs.

This is the third (and last!) problem in the series, which requires you to write a full interpreter.
Make sure you’ve solved the first two problems before attempting this problem. You may have trouble
understanding this problem if you haven’t done so.

Chunk
A chunk (a program or a piece of code that are run as a whole) is a single block:

block -> {stat EOL} [laststat EOL]

laststat -> return [expr] | break

Note that you can use break only as the last statement in a block (to keep things simple, lua even
doesn’t support continue!)

To lua programmers: In lua, you can write two statements in one line, even without a semicolon.
In mini-lua, you can’t write multiple statements in a line. Actually semicolon cannot be used as a
statement delimiter. Moreover, a block can only return one value.

Simple Statements
The following types of statements are easy to understand:

• Empty statement: stat ->

• Function call, then discard the result: stat -> functioncall

• Assignment: stat -> var ‘=’ expr

• Block statement: stat -> do block end

To lua programmers: Multiple assignment (like ‘a,b=b,a’) is not supported in mini-lua. No tail-
recursion optimization is necessary in this problem.

Control Flows
While, repeat and if statements all use conditionals. Both nil and false make a condition false; any

other value makes it true. These statements are defined as follows:

• While statement: stat -> while expr do block end

• Repeat statement: stat -> repeat block until expr

• If statement: stat -> if expr then block { elseif expr then block } [else block] end

And there are two kinds of for loops. The first one is:

stat -> for NAME ‘=’ expr ‘,’ expr [‘,’ expr] do block end

The three expressions in this loop are the initial value, the upper limit (when step > 0) / lower limit
(when step ≤ 0), and the step (default: 1). All three expressions are evaluated exactly once, converted
to number (using ‘tonumber(e)’ function), before the loop starts. All three expressions must all result
in numbers ‘tonumber(e)’ should not return nil). Note that ‘NAME’ is local (you cannot access it
after the loop ends), and you can use ‘break’ to exit the loop, but there is no ‘continue’ statement.

The second one is a more general iteration, looping for all the keys in a table:

stat -> for NAME in iterator do block end

Here ‘iterator’ is either ‘ipairs(table)’ or ‘pairs(table)’ (of course the actual variable being iter-
ated can have other names other than ‘table’). The difference is: ‘ipairs’ loops from 1 to ‘#table, but
‘pairs’ loops for all the keys in table, in no particular order.

Function definition
Given other building blocks discussed above, function definitions are quite simple:

stat -> function NAME ‘(’ [NAME {‘,’ NAME}] ‘)’ block end

Note that all the parameters are local variables. As discussed before, you can use ‘return’ statement
to exit a function, carrying a single return value if you like. You can only use ‘return’ in the last
statement of a block, so if you want to exit a function in the middle, you can wrap it in a block, like
‘do’ ‘return’ ‘end’. It means to exit from the inner-most function that includes the block.

Scoping and Visibility
You can declare a local variable this way:

stat -> local NAME [‘=’ expr]

Like Lua, mini-Lua is a lexically scoped language. The scope of variables begins at the first statement
after their declaration and last until the end of the innermost block that includes the declaration. If
there is another variable having the same name in an outer block, that variable is shadowed (it still
exists, but you cannot access it). Only after the inner block ends, we regain the access to it, because
the inner variable no longer exists. Recall that a chunk is also a block, so you can also declare local
variables in a trunk.

Note that the local variable is accessible only after the declaration, so you can use ‘local x = x’
to declare a local variable called x, initialized with the value of outside variable whose name is also x.

Note that in the repeat-until loop, the inner block does not end at the until keyword, but only
after the condition. So, the condition can refer to local variables declared inside the loop block.

Because of the lexical scoping rules, local variables can be freely accessed by functions defined inside
their scope. However, to keep things simple, all the functions will be declared globally (not nested in
another function or a block), and local variables in the chunk (if any) are always declared after the
functions.

Input

There will be multiple mini-lua programs. Each program starts with a line starting with ‘--PROGRAM’
(it will not appear inside a program).

Output

For each program, print the test case number and the output from the program. Print an empty after
each test case.

Hint
Haven’t you noticed that mua is in LL(1)? A recursive decent parser is enough for this problem.

Sample Input

-- PROGRAM: Eight-Queen problem solver in Mini-Lua

function dfs(d)

if d == n then

cnt = cnt + 1

else

for i = 1, n do

if (not vis[i]) and (not vis2[d-i]) and (not vis3[d+i]) then

vis[i] = true

vis2[d-i] = true

vis3[d+i] = true

dfs(d+1)

vis[i] = nil

vis2[d-i] = nil

vis3[d+i] = nil

end

end

end

end

vis = {}

vis2 = {}

vis3 = {}

cnt = 0

n = 8

dfs(0)

print(cnt)

-- PROGRAM: Scoping and Visibility rules

x = 10

do

local x = x

print(x)

x = x+1

do

local x = x+1

print(x)

end

print(x)

end

print(x)

Sample Output

Program 1:

92

Program 2:

10

12

11

10

