
Languages like Java have Big Decimal libraries supporting basic arithmetic operations like additions,
subtractions, multiplications and divisions. However, scientific problems usually requires mathematical
functions like sin, cos, etc. In this problem, you’re to write a Big Decimal Calculator.

There are 15 commands:

• Function with two arguments: add, sub, mul, div, pow, atan2

• Functions with only one argument: exp, ln, sqrt, asin, acos, atan, sin, cos, tan

For trigonometric functions, angles are always in radians.

Input

There will be at most 100 lines. Each line begins with the function name, followed by arguments, then
the precision p (1 ≤ p ≤ 50). Each argument is formatted as one or more digits, followed by a dot ‘.’,
then by one or more digits. The integer part cannot be omitted, but the last two parts can be omitted
together. There can be an optional negative sign before an argument. Each input number contains
at most 20 digits. In function ‘pow’, ‘exp’, ‘ln’ and ‘sqrt’, all the arguments are strictly positive; in
function ‘asin’ and ‘acos’, the integer part of the arguments are always zero.

Output

For each line, print the answer, rounded to p decimal places (Don’t use scientific notation!). It is
guaranteed that the result will be a finite number, and its integer part will not exceed 10 digits.

Note:
You may notice that this problem is not language-neutral. I mean, some programming languages

have advantages over some others. This is intentional: real-world software development is like this.
Choosing programming languages, libraries and the overall architectures can be vital.

There are quite a lot of literatures on this topic (for example, Fast multiprecision evaluation of series
of rational numbers by Bruno Haible , Thomas Papanikolaou), but that’s overkill for this problem. The
time limit for this problem is rather large, and the test cases are quite gentle: the goal of this problem
is to write a working program, not a perfect one, so try to write a concise code, which is usually faster
to write and easier to debug.

For a much more practical literature, look at this: http://www.tc.umn.edu/.ringx004/sidebar.html.
That small article presents how to translate arguments to make the series expansion converge faster.
Though you will not find the whole solution, you’ll have some nice ideas.

Sample Input

add 1.357 4.6279 10

sub 1.357 4.6279 10

mul 1.357 4.6279 10

div 1 103 30

pow 12.2 12.15 20

atan2 2.45 1.77 30

exp 10.98 50

ln 21.065 50

sqrt 2 40

asin 0.81 30

acos 0.47 35

atan 0.618 40

sin 3.1415 25

cos 2.0113 50

tan 1.78987 30

Sample Output

5.9849000000

-3.2709000000

6.2800603000

0.009708737864077669902912621359

15822384813181.61872382001683484036

0.945162277467215967394902628052

58688.55427461755601946329091442988532551237342326651423

3.04761289543097985660178308429069456872534888053139

1.4142135623730950488016887242096980785697

0.944152115154155950477697775653

1.08150554878078090500864808815790029

0.5535497640327316544572642343482671646331

0.0000926535896606714405662

-0.42639511018918176703311006536787403871085921161347

-4.491415179046604916096895094786


