You are in a maze; seeing $n$ doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all doors.

If you choose the $i$-th door, it can either take you back to the same position where you begun in $x_{i}$ minutes, or can take you out of the maze after $x_{i}$ minutes. If you come back to the same position, you can remember last $K$ doors you have chosen. And when you are about to choose a door, you never choose a door that is already visited by you. Or we can say that you never choose a door that is visited as one of the last $K$ doors. And the probability of choosing any remaining door is equal.

Now you want to find the expected time to get out of the maze.

## Input

Input starts with an integer $T(\leq 100)$, denoting the number of test cases.
Each case contains a blank line and two integers $n K(1 \leq n \leq 100,0 \leq K \leq n)$. The next line contains $n$ space separated integers. If the $i$-th integer $\left(x_{i}\right)$ is positive, you can assume that the $i$-th door will take you out of maze after $x_{i}$ minutes. If it's negative, then the $i$-th door will take you back to the beginning position after $a b s\left(x_{i}\right)$ minutes. You can safely assume that $1 \leq a b s\left(x_{i}\right) \leq 10000$.

## Output

For each case, print the case number and the expected time to get out of the maze. If it's impossible to get out of the maze, print ' -1.000 '. Otherwise print the result rounded to three places after the decimal point. Add $10^{-9}$ to your result to avoid precision errors.

## Sample Input

4

20
1010

20
$10-10$

31
$10-10-20$

32
$10-10-20$

## Sample Output

Case 1: 10.000
Case 2: 20.000
Case 3: 30.000
Case 4: 25.000

