Suppose you are in a 2-Dimensional world. Now, you are in a system of N parallel zones of same or different speed, numbered from 0 to $N-1$. In each zone you can move in some given constant speed (S_{i} amount per second in i-th zone) at any direction. Each zone is parallel to \mathbf{X} axis, starting from the \mathbf{X} axis (and then on the positive \mathbf{X} and positive \mathbf{Y} part only). Width of each zone is 100 (along the \mathbf{Y} axis).

You are currently in the origin $(0,0)$. You need to reach $(100 * N, D)$ coordinate. But, you want to do that in minimum possible time (seconds).

Here is an example with $N=4$, and $D=350$. The arrows show a possible path from $(0,0)$ to $(400,350)$. Note that after the end of each zone (except the last one), it is possible that you may be in an non-integer ' X ' coordinate.

Given N, D, and the speeds $S_{0}, S_{1}, S_{2}, \ldots, S_{N-1}$ you will need to find the minimum possible time in seconds to reach the destination point.

Input

Input starts with an integer $T(\leq 50)$, denoting the number of test cases.
Each case contains two lines. In the first line you will be given two integers $N(1 \leq N \leq 100)$ and $D(0 \leq D \leq 10000)$. In the second line you will be given N integers, the speeds, in the order: S_{0}, S_{1}, S_{2}, \ldots, S_{N-1}. For all $0 \leq i<N, 1 \leq S_{i} \leq 1000$.

Output

For each test case, generate one line of output, in the format 'Case $<$ case - no $>$: $<$ answer $>$ '. Here $<$ case - no $>$ is the case number starting from 1 , and $<$ answer $>$ is the minimum possible time in seconds. Your output should not differ more than $10^{-6}=0.000001$. You should print at least 8 digits after the decimal point for $<$ answer $>$.

Sample Input

2
10
50
3400
101010

Sample Output

Case 1: 2.00000000
Case 2: 50.00000000

