This problem relates the digits $3,2,1$ and 0 . Everyone knows that binary numbers are built of 1 's and 0 's. Now suppose that you are given N cards of 3 and M cards of 2 . Is it possible to pick K cards out of them to build a K-digit decimal number such that all the K least significant digits of its binary representation are zeros?

For example, if you are given one card of each type, you can form the number 32 , whose binary representation 100000 ends with ≥ 2 zeros. However, if both cards have the same value, you cannot form a 2 -digit number that satisfies the requirement.

Input

Input contains no more than 1000 test cases, each given in a line with three non-negative integers N, M and K. All input numbers are smaller than 1000 .

Output

For each test case, output the smallest satisfying K-digit number if found, or 'Impossible.' otherwise.

Sample Input

112
202

Sample Output

32
Impossible.

