A regular convex polygon is a polygon where each side has the same length, and all interior angles are equal and less than 180 degrees. A square, for example, is a regular convex polygon. You are given three points which are vertices of a regular convex polygon R; can you determine the minimum number of vertices that R must have?

Input

Each test case consists of three lines. Line i consists of two floating point values x_{i} and $y_{i}\left(-10^{4} \leq\right.$ $x_{1}, y_{1} \leq 10^{4}$) where (x_{i}, y_{i}) are the coordinates of a vertex of R. The coordinates are given with a precision of 10^{-6}, i.e., they differ from the exact coordinates by at most 10^{-6}. You may assume that for each test case the Euclidean distance between any two given points is at least 1 , and R has at most 1000 vertices. The input will finish with a line containing the word 'END'.

Output

For each test case, print one line with the minimum number of vertices that R must have.

Sample Input

```
-1385.736326 -146.954822
```

430.000292-2041.361203
1162.736034478 .316025
0.0000004147 .000000
-4147.000000 0.000000
$0.000000-4147.000000$
END

Sample Output

