You are given a sequence of n numbers a_{0}, \ldots, a_{n-1}. A cyclic shift by k positions ($0 \leq k \leq n-1$) results in the following sequence: $a_{k}, a_{k+1}, \ldots, a_{n-1}, a_{0}, a_{1}, \ldots, a_{k-1}$. How many of the n cyclic shifts satisfy the condition that the sum of the first i numbers is greater than or equal to zero for all i with $1 \leq i \leq n$?

Input

Each test case consists of two lines. The first contains the number $n\left(1 \leq n \leq 10^{6}\right)$, the number of integers in the sequence. The second contains n integers $a_{0}, \ldots, a_{n-1}\left(-1000 \leq a_{i} \leq 1000\right)$ representing the sequence of numbers. The input will finish with a line containing ' 0 '.

Output

For each test case, print one line with the number of cyclic shifts of the given sequence which satisfy the condition stated above.

Sample Input

3
221
3
-1 11
1
-1
0

Sample Output

3
2
0

