For a sequence of integer numbers $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, a contiguous subsequence $\left\langle x_{i}, x_{i+1}, \ldots, x_{j}\right\rangle$ where $i<j \leq n$, is called "interesting" if its first and last elements are equal (i.e., $x_{i}=x_{j}$). Two interesting subsequences $S_{1}=<x_{i}, x_{i+1}, \ldots, x_{j}>$ and $S_{2}=<x_{a}, x_{a+1}, \ldots, x_{b}>$ are called "conflictfree" if either $a \geq j$ or $i \geq b$.

For a given sequence of known size, find the maximum number of interesting subsequences which are pairwise conflict-free.

Input

The first line of input contains an integer $T \leq 100$ denoting the number of test-cases. Each test-case begins with an integer $1 \leq N \leq 100,000$, on a separate line, denoting the size of the sequence. The following line contains N positive integers each between 1 and 100,000 (inclusive).

Output

For each test-case, output on a single line the maximum number of pairwise conflict-free interesting subsequences.

Sample Input

3
6
121312
4
2424
9
10221034543

Sample Output

2
1
2

